- EMDB-12627: Focused refinement of the RNA polymerase II core pre-initiation c... -
+
データを開く
IDまたはキーワード:
読み込み中...
-
基本情報
登録情報
データベース: EMDB / ID: EMD-12627
タイトル
Focused refinement of the RNA polymerase II core pre-initiation complex in a consensus IC-like state (with ADP-BeF3)
マップデータ
Local resolution filtered and sharpened map
試料
複合体: RNA polymerase II core pre-initiation complex with intermediary promoter DNA
機能・相同性
機能・相同性情報
: / positive regulation of core promoter binding / RNA polymerase II core complex assembly / meiotic sister chromatid cohesion / RNA polymerase transcription factor SL1 complex / transcription factor TFIIE complex / phosphatase activator activity / RNA polymerase III general transcription initiation factor activity / transcription open complex formation at RNA polymerase II promoter / B-WICH complex positively regulates rRNA expression ...: / positive regulation of core promoter binding / RNA polymerase II core complex assembly / meiotic sister chromatid cohesion / RNA polymerase transcription factor SL1 complex / transcription factor TFIIE complex / phosphatase activator activity / RNA polymerase III general transcription initiation factor activity / transcription open complex formation at RNA polymerase II promoter / B-WICH complex positively regulates rRNA expression / RNA Polymerase I Transcription Initiation / RNA Polymerase I Promoter Escape / RNA Polymerase I Transcription Termination / RNA Polymerase III Transcription Initiation From Type 1 Promoter / RNA Polymerase III Transcription Initiation From Type 2 Promoter / RNA Polymerase III Transcription Initiation From Type 3 Promoter / RNA polymerase I core promoter sequence-specific DNA binding / TFIIF-class transcription factor complex binding / RNA Polymerase III Transcription Initiation From Type 1 Promoter / RNA Polymerase III Transcription Initiation From Type 2 Promoter / transcriptional start site selection at RNA polymerase II promoter / RNA Polymerase III Transcription Initiation From Type 3 Promoter / Formation of RNA Pol II elongation complex / Formation of the Early Elongation Complex / Transcriptional regulation by small RNAs / RNA Polymerase II Pre-transcription Events / TP53 Regulates Transcription of DNA Repair Genes / FGFR2 alternative splicing / RNA polymerase II transcribes snRNA genes / mRNA Capping / mRNA Splicing - Minor Pathway / Processing of Capped Intron-Containing Pre-mRNA / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Elongation / RNA Polymerase II Transcription Initiation And Promoter Clearance / RNA Pol II CTD phosphorylation and interaction with CE / Estrogen-dependent gene expression / Formation of TC-NER Pre-Incision Complex / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / mRNA Splicing - Major Pathway / transcription factor TFIIF complex / RNA Polymerase III Abortive And Retractive Initiation / transcription factor TFIIA complex / female germ cell nucleus / male pronucleus / female pronucleus / Abortive elongation of HIV-1 transcript in the absence of Tat / RNA polymerase II general transcription initiation factor binding / germinal vesicle / RNA Polymerase I Transcription Termination / transcription preinitiation complex / FGFR2 alternative splicing / nuclear thyroid hormone receptor binding / Signaling by FGFR2 IIIa TM / Viral Messenger RNA Synthesis / RNA Pol II CTD phosphorylation and interaction with CE during HIV infection / RNA Pol II CTD phosphorylation and interaction with CE / transcription factor TFIID complex / Formation of the Early Elongation Complex / Formation of the HIV-1 Early Elongation Complex / RNA polymerase II general transcription initiation factor activity / cell division site / mRNA Capping / protein acetylation / HIV Transcription Initiation / RNA Polymerase II HIV Promoter Escape / Transcription of the HIV genome / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Initiation And Promoter Clearance / organelle membrane / RNA polymerase III activity / maintenance of transcriptional fidelity during transcription elongation by RNA polymerase II / mRNA Splicing - Minor Pathway / RNA polymerase II complex binding / acetyltransferase activity / RNA Polymerase I Transcription Initiation / viral transcription / Pausing and recovery of Tat-mediated HIV elongation / Tat-mediated HIV elongation arrest and recovery / aryl hydrocarbon receptor binding / positive regulation of nuclear-transcribed mRNA poly(A) tail shortening / HIV elongation arrest and recovery / Pausing and recovery of HIV elongation / Processing of Capped Intron-Containing Pre-mRNA / TFIIB-class transcription factor binding / transcription by RNA polymerase III / RNA polymerase II transcribes snRNA genes / RNA polymerase II activity / Tat-mediated elongation of the HIV-1 transcript / transcription elongation by RNA polymerase I / positive regulation of transcription initiation by RNA polymerase II / Formation of HIV-1 elongation complex containing HIV-1 Tat / transcription-coupled nucleotide-excision repair / tRNA transcription by RNA polymerase III / RNA polymerase II core promoter sequence-specific DNA binding 類似検索 - 分子機能
RNA polymerase II subunit D / DNA-directed RNA polymerase II subunit RPB11-a / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerase II subunit RPB3 / DNA-directed RNA polymerase subunit beta / DNA-directed RNA polymerase II subunit RPB7 / RNA polymerase II, I and III subunit K / DNA-directed RNA polymerase II subunit E ...RNA polymerase II subunit D / DNA-directed RNA polymerase II subunit RPB11-a / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerase II subunit RPB3 / DNA-directed RNA polymerase subunit beta / DNA-directed RNA polymerase II subunit RPB7 / RNA polymerase II, I and III subunit K / DNA-directed RNA polymerase II subunit E / General transcription factor IIF subunit 2 / TATA-box-binding protein / General transcription factor IIE subunit 1 / Transcription initiation factor IIE subunit beta / General transcription factor IIF subunit 1 / Transcription initiation factor IIA subunit 1 / Transcription initiation factor IIA subunit 2 / DNA-directed RNA polymerase II subunit RPB9 / Transcription initiation factor IIB 類似検索 - 構成要素
H2020 Marie Curie Actions of the European Commission
894862
ドイツ
German Research Foundation (DFG)
EXC 2067/1 39072994
ドイツ
German Research Foundation (DFG)
SFB860
ドイツ
German Research Foundation (DFG)
SPP2191
ドイツ
European Research Council (ERC)
882357
ドイツ
引用
ジャーナル: Nature / 年: 2021 タイトル: Structures of mammalian RNA polymerase II pre-initiation complexes. 著者: Shintaro Aibara / Sandra Schilbach / Patrick Cramer / 要旨: The initiation of transcription is a focal point for the regulation of gene activity during mammalian cell differentiation and development. To initiate transcription, RNA polymerase II (Pol II) ...The initiation of transcription is a focal point for the regulation of gene activity during mammalian cell differentiation and development. To initiate transcription, RNA polymerase II (Pol II) assembles with general transcription factors into a pre-initiation complex (PIC) that opens promoter DNA. Previous work provided the molecular architecture of the yeast and human PIC and a topological model for DNA opening by the general transcription factor TFIIH. Here we report the high-resolution cryo-electron microscopy structure of PIC comprising human general factors and Sus scrofa domesticus Pol II, which is 99.9% identical to human Pol II. We determine the structures of PIC with closed and opened promoter DNA at 2.5-2.8 Å resolution, and resolve the structure of TFIIH at 2.9-4.0 Å resolution. We capture the TFIIH translocase XPB in the pre- and post-translocation states, and show that XPB induces and propagates a DNA twist to initiate the opening of DNA approximately 30 base pairs downstream of the TATA box. We also provide evidence that DNA opening occurs in two steps and leads to the detachment of TFIIH from the core PIC, which may stop DNA twisting and enable RNA chain initiation.