[English] 日本語
Yorodumi
- EMDB-10020: RNA Polymerase I Open Complex conformation 2 focused refinement on Pol -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-10020
TitleRNA Polymerase I Open Complex conformation 2 focused refinement on Pol
Map dataRNA Polymerase I Open Complex conformation 2 (OC2) focused refinement on Pol
Sample
  • Complex: RNA Polymerase I Open Complex conformation 2 focused refinement on Pol
    • Complex: RNA Polymerase I
    • Complex: DNA
    • Complex: transcription initiation factors
Function / homology
Function and homology information


RNA polymerase I core binding / rDNA binding / RNA polymerase I general transcription initiation factor activity / RNA polymerase I general transcription initiation factor binding / RNA polymerase I preinitiation complex assembly / RNA Polymerase I Transcription Initiation / Processing of Capped Intron-Containing Pre-mRNA / RNA Polymerase III Transcription Initiation From Type 2 Promoter / regulation of cell size / RNA Pol II CTD phosphorylation and interaction with CE ...RNA polymerase I core binding / rDNA binding / RNA polymerase I general transcription initiation factor activity / RNA polymerase I general transcription initiation factor binding / RNA polymerase I preinitiation complex assembly / RNA Polymerase I Transcription Initiation / Processing of Capped Intron-Containing Pre-mRNA / RNA Polymerase III Transcription Initiation From Type 2 Promoter / regulation of cell size / RNA Pol II CTD phosphorylation and interaction with CE / Formation of the Early Elongation Complex / mRNA Capping / RNA polymerase II transcribes snRNA genes / TP53 Regulates Transcription of DNA Repair Genes / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Initiation And Promoter Clearance / RNA-templated transcription / RNA Polymerase II Pre-transcription Events / termination of RNA polymerase III transcription / Formation of TC-NER Pre-Incision Complex / RNA polymerase III activity / transcription initiation at RNA polymerase III promoter / termination of RNA polymerase I transcription / RNA Polymerase I Promoter Escape / nucleolar large rRNA transcription by RNA polymerase I / Gap-filling DNA repair synthesis and ligation in TC-NER / transcription by RNA polymerase I / transcription initiation at RNA polymerase I promoter / Estrogen-dependent gene expression / transcription by RNA polymerase III / Dual incision in TC-NER / transcription elongation by RNA polymerase I / tRNA transcription by RNA polymerase III / RNA polymerase I activity / RNA polymerase I complex / RNA polymerase III complex / RNA polymerase II, core complex / promoter-specific chromatin binding / transcription initiation at RNA polymerase II promoter / transcription elongation by RNA polymerase II / ribonucleoside binding / DNA-directed RNA polymerase / peroxisome / ribosome biogenesis / RNA polymerase II-specific DNA-binding transcription factor binding / transcription by RNA polymerase II / nucleic acid binding / protein dimerization activity / nucleolus / negative regulation of transcription by RNA polymerase II / DNA binding / zinc ion binding / nucleoplasm / nucleus / metal ion binding / cytoplasm
Similarity search - Function
RNA polymerase I specific transcription initiation factor RRN3 / RNA polymerase I specific transcription initiation factor RRN3 / : / RNA polymerase I, subunit Rpa14, fungi / Yeast RNA polymerase I subunit RPA14 / DNA-directed RNA polymerase I, subunit RPA34.5 / DNA-directed RNA polymerase I subunit RPA34.5 / RNA polymerase I associated factor, A49-like / A49-like RNA polymerase I associated factor / Rpa43, N-terminal ribonucleoprotein (RNP) domain ...RNA polymerase I specific transcription initiation factor RRN3 / RNA polymerase I specific transcription initiation factor RRN3 / : / RNA polymerase I, subunit Rpa14, fungi / Yeast RNA polymerase I subunit RPA14 / DNA-directed RNA polymerase I, subunit RPA34.5 / DNA-directed RNA polymerase I subunit RPA34.5 / RNA polymerase I associated factor, A49-like / A49-like RNA polymerase I associated factor / Rpa43, N-terminal ribonucleoprotein (RNP) domain / RPA43, OB domain / RPA43 OB domain in RNA Pol I / DNA-directed RNA polymerase I subunit RPA2, domain 4 / DNA-directed RNA pol I, largest subunit / Pol I subunit A12, C-terminal zinc ribbon / : / RNA polymerase I, Rpa2 specific domain / DNA-directed RNA polymerases I and III subunit AC19 / DNA-directed RNA polymerases I and III subunit AC40 / Zinc finger TFIIS-type signature. / RNA polymerase Rpb7-like , N-terminal / RNA polymerase Rpb7-like, N-terminal domain superfamily / RNA polymerase subunit Rpb7-like / SHS2 domain found in N terminus of Rpb7p/Rpc25p/MJ0397 / DNA-directed RNA polymerase, M/15kDa subunit / RNA polymerases M/15 Kd subunit / RNA polymerase subunit 9 / DNA-directed RNA polymerase subunit RPABC5/Rpb10 / RNA polymerases, subunit N, zinc binding site / RNA polymerase subunit RPB10 / RNA polymerases N / 8 kDa subunit / RNA polymerases N / 8 Kd subunits signature. / DNA-directed RNA polymerase M, 15kDa subunit, conserved site / RNA polymerases M / 15 Kd subunits signature. / DNA-directed RNA polymerase subunit/transcription factor S / : / RNA polymerase, Rpb8 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / RNA polymerase Rpb8 / RNA polymerase subunit 8 / RNA polymerase, Rpb5, N-terminal / RNA polymerase Rpb5, N-terminal domain superfamily / RNA polymerase Rpb5, N-terminal domain / DNA-directed RNA polymerase, subunit RPB6 / DNA directed RNA polymerase, 7 kDa subunit / RNA polymerase archaeal subunit P/eukaryotic subunit RPABC4 / RNA polymerase, subunit H/Rpb5, conserved site / RNA polymerases H / 23 Kd subunits signature. / RNA polymerase subunit CX / DNA-directed RNA polymerase, 30-40kDa subunit, conserved site / DNA-directed RNA polymerase subunit Rpo3/Rpb3/RPAC1 / RNA polymerases D / 30 to 40 Kd subunits signature. / DNA-directed RNA polymerase Rpb11, 13-16kDa subunit, conserved site / DNA-directed RNA polymerase subunit Rpo11 / RNA polymerases L / 13 to 16 Kd subunits signature. / Zinc finger, TFIIS-type / DNA-directed RNA polymerase subunit Rpo5/Rpb5 / Transcription factor S-II (TFIIS) / Zinc finger TFIIS-type profile. / C2C2 Zinc finger / DNA-directed RNA polymerase, RBP11-like dimerisation domain / RNA polymerase Rpb3/Rpb11 dimerisation domain / RNA polymerase, subunit H/Rpb5 C-terminal / RNA polymerase subunit RPABC4/transcription elongation factor Spt4 / RPB5-like RNA polymerase subunit superfamily / RNA polymerase Rpb5, C-terminal domain / Archaeal Rpo6/eukaryotic RPB6 RNA polymerase subunit / DNA-directed RNA polymerase, 14-18kDa subunit, conserved site / RNA polymerases K / 14 to 18 Kd subunits signature. / RNA polymerase Rpb6 / RNA polymerase, subunit omega/Rpo6/RPB6 / RNA polymerase Rpb6 / RNA polymerase Rpb1, domain 3 superfamily / RPB6/omega subunit-like superfamily / RNA polymerase Rpb1, clamp domain superfamily / RNA polymerase Rpb2, domain 2 superfamily / RNA polymerase Rpb1, domain 3 / RNA polymerase Rpb1, domain 3 / DNA-directed RNA polymerase, subunit beta-prime / RNA polymerase Rpb1, domain 1 / RNA polymerase Rpb1, domain 1 / RNA polymerase, alpha subunit / RNA polymerase Rpb1, domain 5 / RNA polymerase Rpb1, domain 4 / RNA polymerase Rpb1, domain 2 / RNA polymerase Rpb1, domain 5 / RNA polymerase Rpb1, domain 4 / RNA polymerase, beta subunit, protrusion / RNA polymerase beta subunit / RNA polymerase, N-terminal / RNA polymerase Rpb1, funnel domain superfamily / RNA polymerase I subunit A N-terminus / DNA-directed RNA polymerase, insert domain / DNA-directed RNA polymerase, RpoA/D/Rpb3-type / RNA polymerase Rpb3/RpoA insert domain / RNA polymerase Rpb3/Rpb11 dimerisation domain / RNA polymerases D / DNA-directed RNA polymerase, insert domain superfamily / RNA polymerase, RBP11-like subunit / RNA polymerase Rpb2, domain 2
Similarity search - Domain/homology
DNA-directed RNA polymerases I and III subunit RPAC1 / DNA-directed RNA polymerase I subunit RPA190 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerase I subunit RPA135 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerases I and III subunit RPAC2 / DNA-directed RNA polymerase I subunit RPA12 / RNA polymerase I-specific transcription initiation factor RRN3 ...DNA-directed RNA polymerases I and III subunit RPAC1 / DNA-directed RNA polymerase I subunit RPA190 / DNA-directed RNA polymerases I, II, and III subunit RPABC1 / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerase I subunit RPA135 / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerases I and III subunit RPAC2 / DNA-directed RNA polymerase I subunit RPA12 / RNA polymerase I-specific transcription initiation factor RRN3 / DNA-directed RNA polymerases I, II, and III subunit RPABC4 / DNA-directed RNA polymerase I subunit RPA43 / DNA-directed RNA polymerase I subunit RPA34 / DNA-directed RNA polymerase I subunit RPA14 / DNA-directed RNA polymerase I subunit RPA49
Similarity search - Component
Biological speciesSaccharomyces cerevisiae (brewer's yeast) / synthetic construct (others)
Methodsingle particle reconstruction / cryo EM / Resolution: 2.96 Å
AuthorsMueller CW / Sadian Y
Funding support1 items
OrganizationGrant numberCountry
European Research CouncilERC-2013-AdG340964-POL1PIC
CitationJournal: Nat Commun / Year: 2019
Title: Molecular insight into RNA polymerase I promoter recognition and promoter melting.
Authors: Yashar Sadian / Florence Baudin / Lucas Tafur / Brice Murciano / Rene Wetzel / Felix Weis / Christoph W Müller /
Abstract: RNA polymerase I (Pol I) assembles with core factor (CF) and Rrn3 on the rDNA core promoter for transcription initiation. Here, we report cryo-EM structures of closed, intermediate and open Pol I ...RNA polymerase I (Pol I) assembles with core factor (CF) and Rrn3 on the rDNA core promoter for transcription initiation. Here, we report cryo-EM structures of closed, intermediate and open Pol I initiation complexes from 2.7 to 3.7 Å resolution to visualize Pol I promoter melting and to structurally and biochemically characterize the recognition mechanism of Pol I promoter DNA. In the closed complex, double-stranded DNA runs outside the DNA-binding cleft. Rotation of CF and upstream DNA with respect to Pol I and Rrn3 results in the spontaneous loading and opening of the promoter followed by cleft closure and positioning of the Pol I A49 tandem winged helix domain (tWH) onto DNA. Conformational rearrangement of A49 tWH leads to a clash with Rrn3 to initiate complex disassembly and promoter escape. Comprehensive insight into the Pol I transcription initiation cycle allows comparisons with promoter opening by Pol II and Pol III.
History
DepositionJun 3, 2019-
Header (metadata) releaseApr 22, 2020-
Map releaseApr 22, 2020-
UpdateApr 22, 2020-
Current statusApr 22, 2020Processing site: PDBe / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.05
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by radius
  • Surface level: 0.05
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_10020.map.gz / Format: CCP4 / Size: 91.1 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
AnnotationRNA Polymerase I Open Complex conformation 2 (OC2) focused refinement on Pol
Projections & slices

Image control

Size
Brightness
Contrast
Others
AxesZ (Sec.)Y (Row.)X (Col.)
1.32 Å/pix.
x 288 pix.
= 380.16 Å
1.32 Å/pix.
x 288 pix.
= 380.16 Å
1.32 Å/pix.
x 288 pix.
= 380.16 Å

Surface

Projections

Slices (1/3)

Slices (1/2)

Slices (2/3)

Images are generated by Spider.

Voxel sizeX=Y=Z: 1.32 Å
Density
Contour LevelBy AUTHOR: 0.05 / Movie #1: 0.05
Minimum - Maximum-0.21976033 - 0.4304662
Average (Standard dev.)0.00050026295 (±0.009524927)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions288288288
Spacing288288288
CellA=B=C: 380.16 Å
α=β=γ: 90.0 °

CCP4 map header:

modeImage stored as Reals
Å/pix. X/Y/Z1.321.321.32
M x/y/z288288288
origin x/y/z0.0000.0000.000
length x/y/z380.160380.160380.160
α/β/γ90.00090.00090.000
MAP C/R/S123
start NC/NR/NS000
NC/NR/NS288288288
D min/max/mean-0.2200.4300.001

-
Supplemental data

-
Sample components

-
Entire : RNA Polymerase I Open Complex conformation 2 focused refinement on Pol

EntireName: RNA Polymerase I Open Complex conformation 2 focused refinement on Pol
Components
  • Complex: RNA Polymerase I Open Complex conformation 2 focused refinement on Pol
    • Complex: RNA Polymerase I
    • Complex: DNA
    • Complex: transcription initiation factors

-
Supramolecule #1: RNA Polymerase I Open Complex conformation 2 focused refinement on Pol

SupramoleculeName: RNA Polymerase I Open Complex conformation 2 focused refinement on Pol
type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1-#20

-
Supramolecule #2: RNA Polymerase I

SupramoleculeName: RNA Polymerase I / type: complex / ID: 2 / Parent: 1 / Macromolecule list: #3-#16
Source (natural)Organism: Saccharomyces cerevisiae (brewer's yeast)

-
Supramolecule #3: DNA

SupramoleculeName: DNA / type: complex / ID: 3 / Parent: 1 / Macromolecule list: #1-#2
Source (natural)Organism: synthetic construct (others)
Recombinant expressionOrganism: synthetic construct (others)

-
Supramolecule #4: transcription initiation factors

SupramoleculeName: transcription initiation factors / type: complex / ID: 4 / Parent: 1 / Macromolecule list: #17-#20
Source (natural)Organism: Saccharomyces cerevisiae (brewer's yeast)
Recombinant expressionOrganism: Escherichia coli (E. coli)

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

BufferpH: 7.5
VitrificationCryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 4 K / Instrument: FEI VITROBOT MARK IV

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Image recordingFilm or detector model: GATAN K2 SUMMIT (4k x 4k) / Detector mode: SUPER-RESOLUTION / Average electron dose: 1.57175 e/Å2
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

-
Image processing

CTF correctionSoftware - Name: Gctf
Final reconstructionResolution.type: BY AUTHOR / Resolution: 2.96 Å / Resolution method: FSC 0.143 CUT-OFF / Number images used: 59963
Initial angle assignmentType: MAXIMUM LIKELIHOOD
Final angle assignmentType: MAXIMUM LIKELIHOOD / Software - Name: RELION

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more