27S pre-rRNA (guanosine2922-2'-O)-methyltransferase / rRNA (guanosine-2'-O-)-methyltransferase activity / exonucleolytic trimming to generate mature 5'-end of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / nuclear exosome (RNase complex) / rRNA (uridine-2'-O-)-methyltransferase activity / rRNA (guanine) methyltransferase activity / PeBoW complex / rRNA primary transcript binding / positive regulation of ATP-dependent activity / maturation of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) ...27S pre-rRNA (guanosine2922-2'-O)-methyltransferase / rRNA (guanosine-2'-O-)-methyltransferase activity / exonucleolytic trimming to generate mature 5'-end of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / nuclear exosome (RNase complex) / rRNA (uridine-2'-O-)-methyltransferase activity / rRNA (guanine) methyltransferase activity / PeBoW complex / rRNA primary transcript binding / positive regulation of ATP-dependent activity / maturation of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / rRNA methylation / pre-mRNA 5'-splice site binding / maturation of 5.8S rRNA / cleavage in ITS2 between 5.8S rRNA and LSU-rRNA of tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / proteasome binding / Major pathway of rRNA processing in the nucleolus and cytosol / SRP-dependent cotranslational protein targeting to membrane / GTP hydrolysis and joining of the 60S ribosomal subunit / ribosomal large subunit binding / ATPase activator activity / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / negative regulation of mRNA splicing, via spliceosome / Formation of a pool of free 40S subunits / preribosome, large subunit precursor / nuclear-transcribed mRNA catabolic process / L13a-mediated translational silencing of Ceruloplasmin expression / translational elongation / ribosomal large subunit export from nucleus / ribosomal subunit export from nucleus / regulation of translational fidelity / ribonucleoprotein complex binding / protein-RNA complex assembly / maturation of LSU-rRNA / translation initiation factor activity / proteasome complex / assembly of large subunit precursor of preribosome / maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) / ribosomal large subunit biogenesis / cytosolic ribosome assembly / maturation of SSU-rRNA / small-subunit processome / macroautophagy / protein catabolic process / maintenance of translational fidelity / rRNA processing / protein transport / ribosome biogenesis / ATPase binding / 5S rRNA binding / ribosomal large subunit assembly / large ribosomal subunit rRNA binding / protein-macromolecule adaptor activity / cytosolic large ribosomal subunit / cytoplasmic translation / negative regulation of translation / rRNA binding / ribosome / structural constituent of ribosome / translation / ribonucleoprotein complex / GTPase activity / mRNA binding / GTP binding / nucleolus / RNA binding / zinc ion binding / nucleoplasm / identical protein binding / nucleus / cytosol / cytoplasm 類似検索 - 分子機能
Ribosome biogenesis protein 15, RNA recognition motif / Ribosome biogenesis protein Nop53/GLTSCR2 / Nop53 (60S ribosomal biogenesis) / Ribosomal RNA methyltransferase, SPB1-like, C-terminal / Ribosomal RNA methyltransferase Spb1, domain of unknown function DUF3381 / AdoMet-dependent rRNA methyltransferase SPB1-like / Spb1 C-terminal domain / Ribosomal RNA methyltransferase Spb1, DUF3381 / : / Ribosomal RNA large subunit methyltransferase E ...Ribosome biogenesis protein 15, RNA recognition motif / Ribosome biogenesis protein Nop53/GLTSCR2 / Nop53 (60S ribosomal biogenesis) / Ribosomal RNA methyltransferase, SPB1-like, C-terminal / Ribosomal RNA methyltransferase Spb1, domain of unknown function DUF3381 / AdoMet-dependent rRNA methyltransferase SPB1-like / Spb1 C-terminal domain / Ribosomal RNA methyltransferase Spb1, DUF3381 / : / Ribosomal RNA large subunit methyltransferase E / Domain of unknown function DUF2423 / YBL028C ribosome biogenesis factor, N-terminal domain / Guanine nucleotide-binding protein-like 3, N-terminal domain / GNL3L/Grn1 putative GTPase / : / Pescadillo / Pescadillo N-terminus / GTP-binding protein, orthogonal bundle domain superfamily / Ribosomal biogenesis NSA2 family / Ribosome assembly factor Mrt4 / : / BRCT domain / NOG, C-terminal / Nucleolar GTP-binding protein 1 / NOGCT (NUC087) domain / Nucleolar GTP-binding protein 1, Rossman-fold domain / NOG1, N-terminal helical domain / Nucleolar GTP-binding protein 1 (NOG1) / NOG1 N-terminal helical domain / Circularly permuted (CP)-type guanine nucleotide-binding (G) domain / Circularly permuted (CP)-type guanine nucleotide-binding (G) domain profile. / OBG-type guanine nucleotide-binding (G) domain / OBG-type guanine nucleotide-binding (G) domain profile. / Translation initiation factor IF6 / eIF-6 family / translation initiation factor 6 / 50S ribosome-binding GTPase / GTP binding domain / 50S ribosomal protein L10, insertion domain superfamily / 60S ribosomal protein L10P, insertion domain / Insertion domain in 60S ribosomal protein L10P / breast cancer carboxy-terminal domain / metallochaperone-like domain / TRASH domain / Ribosomal protein L13e, conserved site / Ribosomal protein L13e signature. / Ribosomal protein L22e / Ribosomal protein L22e superfamily / Ribosomal L22e protein family / Ribosomal protein L27e, conserved site / Ribosomal protein L27e signature. / Ribosomal protein L38e / Ribosomal protein L38e superfamily / Ribosomal L38e protein family / : / Ribosomal protein L19, eukaryotic / Ribosomal protein L19/L19e conserved site / Ribosomal protein L19e signature. / Ribosomal protein L6e signature. / Ribosomal protein L13e / Ribosomal protein L13e / BRCT domain profile. / 60S ribosomal protein L18a/ L20, eukaryotes / BRCT domain / Ribosomal protein L34e, conserved site / Ribosomal protein L34e signature. / Ribosomal protein L30e signature 1. / 50S ribosomal protein L18Ae/60S ribosomal protein L20 and L18a / Ribosomal protein 50S-L18Ae/60S-L20/60S-L18A / Ribosomal proteins 50S-L18Ae/60S-L20/60S-L18A / Ribosomal protein L23/L25, N-terminal / : / Ribosomal protein L23, N-terminal domain / Eukaryotic Ribosomal Protein L27, KOW domain / Ribosomal protein 60S L18 and 50S L18e / Ribosomal Protein L6, KOW domain / Ribosomal protein L18/L18-A/B/e, conserved site / Ribosomal protein L18e signature. / Ribosomal protein L30e signature 2. / Ribosomal protein L27e / Ribosomal protein L27e superfamily / Ribosomal L27e protein family / Ribosomal protein L36e signature. / Ribosomal protein L35Ae, conserved site / Ribosomal protein L30e, conserved site / Ribosomal protein L35Ae signature. / BRCT domain superfamily / Ribosomal protein L1-like / Ribosomal protein L1/ribosomal biogenesis protein / Ribosomal protein L1p/L10e family / Ribosomal protein L39e, conserved site / Ribosomal protein L39e signature. / : / Ribosomal protein L6e / Ribosomal protein L34Ae / Ribosomal protein L34e / 60S ribosomal protein L19 / Ribosomal protein L30/YlxQ / Ribosomal protein L7A/L8 / 60S ribosomal protein L6E 類似検索 - ドメイン・相同性
Ribosome biogenesis protein NSA2 / Pescadillo homolog / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein eL39 / Large ribosomal subunit protein uL30A / Large ribosomal subunit protein uL6A / Large ribosomal subunit protein uL22A / Large ribosomal subunit protein uL24A / Large ribosomal subunit protein eL33A ...Ribosome biogenesis protein NSA2 / Pescadillo homolog / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein eL39 / Large ribosomal subunit protein uL30A / Large ribosomal subunit protein uL6A / Large ribosomal subunit protein uL22A / Large ribosomal subunit protein uL24A / Large ribosomal subunit protein eL33A / Large ribosomal subunit protein eL36A / Large ribosomal subunit protein eL15A / Large ribosomal subunit protein eL22A / Large ribosomal subunit protein eL27A / Large ribosomal subunit protein eL31A / Large ribosomal subunit protein eL20A / Large ribosomal subunit protein uL14A / Large ribosomal subunit protein eL18A / Large ribosomal subunit protein eL19A / Large ribosomal subunit protein uL29A / Large ribosomal subunit protein uL4A / Large ribosomal subunit protein eL30 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein eL8A / 27S pre-rRNA (guanosine(2922)-2'-O)-methyltransferase / Large ribosomal subunit protein uL13A / Ribosome assembly factor MRT4 / Large ribosomal subunit protein eL14A / Large ribosomal subunit protein eL32 / UPF0642 protein YBL028C / Proteasome-interacting protein CIC1 / Nuclear GTP-binding protein NUG1 / Ribosome biogenesis protein RLP7 / Large ribosomal subunit protein eL37A / Large ribosomal subunit protein eL38 / Ribosome biogenesis protein 15 / Large ribosomal subunit protein eL34A / Large ribosomal subunit protein eL6A / Large ribosomal subunit protein eL21A / Nucleolar GTP-binding protein 1 / Ribosome biogenesis protein RLP24 / Ribosome biogenesis protein NOP53 / Eukaryotic translation initiation factor 6 / Large ribosomal subunit protein eL13A 類似検索 - 構成要素
ジャーナル: Mol Cell / 年: 2020 タイトル: Construction of the Central Protuberance and L1 Stalk during 60S Subunit Biogenesis. 著者: Lukas Kater / Valentin Mitterer / Matthias Thoms / Jingdong Cheng / Otto Berninghausen / Roland Beckmann / Ed Hurt / 要旨: Ribosome assembly is driven by numerous assembly factors, including the Rix1 complex and the AAA ATPase Rea1. These two assembly factors catalyze 60S maturation at two distinct states, triggering ...Ribosome assembly is driven by numerous assembly factors, including the Rix1 complex and the AAA ATPase Rea1. These two assembly factors catalyze 60S maturation at two distinct states, triggering poorly understood large-scale structural transitions that we analyzed by cryo-electron microscopy. Two nuclear pre-60S intermediates were discovered that represent previously unknown states after Rea1-mediated removal of the Ytm1-Erb1 complex and reveal how the L1 stalk develops from a pre-mature nucleolar to a mature-like nucleoplasmic state. A later pre-60S intermediate shows how the central protuberance arises, assisted by the nearby Rix1-Rea1 machinery, which was solved in its pre-ribosomal context to molecular resolution. This revealed a Rix1-Ipi3 tetramer anchored to the pre-60S via Ipi1, strategically positioned to monitor this decisive remodeling. These results are consistent with a general underlying principle that temporarily stabilized immature RNA domains are successively remodeled by assembly factors, thereby ensuring failsafe assembly progression.