[English] 日本語
Yorodumi- PDB-6xjd: Two mouse cGAS catalytic domain binding to human assembled nucleosome -
+Open data
-Basic information
Entry | Database: PDB / ID: 6xjd | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | Two mouse cGAS catalytic domain binding to human assembled nucleosome | |||||||||
Components |
| |||||||||
Keywords | IMMUNE SYSTEM/DNA / Immunity / IMMUNE SYSTEM / IMMUNE SYSTEM-DNA complex | |||||||||
Function / homology | Function and homology information 2',3'-cyclic GMP-AMP synthase activity / cyclic GMP-AMP synthase / paracrine signaling / poly-ADP-D-ribose modification-dependent protein binding / regulation of type I interferon production / regulation of immunoglobulin production / cGAS/STING signaling pathway / regulation of T cell activation / negative regulation of cGAS/STING signaling pathway / negative regulation of DNA repair ...2',3'-cyclic GMP-AMP synthase activity / cyclic GMP-AMP synthase / paracrine signaling / poly-ADP-D-ribose modification-dependent protein binding / regulation of type I interferon production / regulation of immunoglobulin production / cGAS/STING signaling pathway / regulation of T cell activation / negative regulation of cGAS/STING signaling pathway / negative regulation of DNA repair / cGMP-mediated signaling / cellular response to exogenous dsRNA / positive regulation of type I interferon production / nucleosome binding / regulation of immune response / negative regulation of double-strand break repair via homologous recombination / negative regulation of megakaryocyte differentiation / protein localization to CENP-A containing chromatin / positive regulation of defense response to virus by host / Chromatin modifying enzymes / Replacement of protamines by nucleosomes in the male pronucleus / CENP-A containing nucleosome / Packaging Of Telomere Ends / activation of innate immune response / phosphatidylinositol-4,5-bisphosphate binding / Recognition and association of DNA glycosylase with site containing an affected purine / Cleavage of the damaged purine / Deposition of new CENPA-containing nucleosomes at the centromere / nucleosomal DNA binding / cAMP-mediated signaling / Recognition and association of DNA glycosylase with site containing an affected pyrimidine / Cleavage of the damaged pyrimidine / Inhibition of DNA recombination at telomere / telomere organization / Meiotic synapsis / Interleukin-7 signaling / RNA Polymerase I Promoter Opening / Assembly of the ORC complex at the origin of replication / SUMOylation of chromatin organization proteins / Regulation of endogenous retroelements by the Human Silencing Hub (HUSH) complex / DNA methylation / Condensation of Prophase Chromosomes / SIRT1 negatively regulates rRNA expression / Chromatin modifications during the maternal to zygotic transition (MZT) / ERCC6 (CSB) and EHMT2 (G9a) positively regulate rRNA expression / HCMV Late Events / innate immune response in mucosa / determination of adult lifespan / PRC2 methylates histones and DNA / Regulation of endogenous retroelements by KRAB-ZFP proteins / Defective pyroptosis / Regulation of endogenous retroelements by Piwi-interacting RNAs (piRNAs) / HDACs deacetylate histones / Nonhomologous End-Joining (NHEJ) / RNA Polymerase I Promoter Escape / molecular condensate scaffold activity / Transcriptional regulation by small RNAs / Formation of the beta-catenin:TCF transactivating complex / RUNX1 regulates genes involved in megakaryocyte differentiation and platelet function / NoRC negatively regulates rRNA expression / Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3 / G2/M DNA damage checkpoint / HDMs demethylate histones / B-WICH complex positively regulates rRNA expression / DNA Damage/Telomere Stress Induced Senescence / heterochromatin formation / PKMTs methylate histone lysines / Metalloprotease DUBs / Meiotic recombination / Pre-NOTCH Transcription and Translation / RMTs methylate histone arginines / Activation of anterior HOX genes in hindbrain development during early embryogenesis / HCMV Early Events / positive regulation of cellular senescence / Transcriptional regulation of granulopoiesis / structural constituent of chromatin / UCH proteinases / antimicrobial humoral immune response mediated by antimicrobial peptide / nucleosome / nucleosome assembly / E3 ubiquitin ligases ubiquitinate target proteins / antibacterial humoral response / Recruitment and ATM-mediated phosphorylation of repair and signaling proteins at DNA double strand breaks / chromatin organization / site of double-strand break / RUNX1 regulates transcription of genes involved in differentiation of HSCs / Factors involved in megakaryocyte development and platelet production / HATs acetylate histones / Processing of DNA double-strand break ends / double-stranded DNA binding / Senescence-Associated Secretory Phenotype (SASP) / defense response to virus / Oxidative Stress Induced Senescence / Estrogen-dependent gene expression / chromosome, telomeric region / nuclear body / Ub-specific processing proteases / defense response to Gram-positive bacterium / protein heterodimerization activity / Amyloid fiber formation Similarity search - Function | |||||||||
Biological species | Homo sapiens (human) Mus musculus (house mouse) | |||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 6.8 Å | |||||||||
Authors | Xu, P. / Li, P. / Zhao, B. | |||||||||
Funding support | United States, 2items
| |||||||||
Citation | Journal: Nature / Year: 2020 Title: The molecular basis of tight nuclear tethering and inactivation of cGAS. Authors: Baoyu Zhao / Pengbiao Xu / Chesley M Rowlett / Tao Jing / Omkar Shinde / Yuanjiu Lei / A Phillip West / Wenshe Ray Liu / Pingwei Li / Abstract: Nucleic acids derived from pathogens induce potent innate immune responses. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor that catalyses the synthesis of the cyclic dinucleotide ...Nucleic acids derived from pathogens induce potent innate immune responses. Cyclic GMP-AMP synthase (cGAS) is a double-stranded DNA sensor that catalyses the synthesis of the cyclic dinucleotide cyclic GMP-AMP, which mediates the induction of type I interferons through the STING-TBK1-IRF3 signalling axis. cGAS was previously thought to not react with self DNA owing to its cytosolic localization; however, recent studies have shown that cGAS is localized mostly in the nucleus and has low activity as a result of tight nuclear tethering. Here we show that cGAS binds to nucleosomes with nanomolar affinity and that nucleosome binding potently inhibits its catalytic activity. To elucidate the molecular basis of cGAS inactivation by nuclear tethering, we determined the structure of mouse cGAS bound to human nucleosome by cryo-electron microscopy. The structure shows that cGAS binds to a negatively charged acidic patch formed by histones H2A and H2B via its second DNA-binding site. High-affinity nucleosome binding blocks double-stranded DNA binding and maintains cGAS in an inactive conformation. Mutations of cGAS that disrupt nucleosome binding alter cGAS-mediated signalling in cells. | |||||||||
History |
|
-Structure visualization
Movie |
Movie viewer |
---|---|
Structure viewer | Molecule: MolmilJmol/JSmol |
-Downloads & links
-Download
PDBx/mmCIF format | 6xjd.cif.gz | 414.2 KB | Display | PDBx/mmCIF format |
---|---|---|---|---|
PDB format | pdb6xjd.ent.gz | 318.7 KB | Display | PDB format |
PDBx/mmJSON format | 6xjd.json.gz | Tree view | PDBx/mmJSON format | |
Others | Other downloads |
-Validation report
Summary document | 6xjd_validation.pdf.gz | 829.5 KB | Display | wwPDB validaton report |
---|---|---|---|---|
Full document | 6xjd_full_validation.pdf.gz | 866.4 KB | Display | |
Data in XML | 6xjd_validation.xml.gz | 53.9 KB | Display | |
Data in CIF | 6xjd_validation.cif.gz | 84.3 KB | Display | |
Arichive directory | https://data.pdbj.org/pub/pdb/validation_reports/xj/6xjd ftp://data.pdbj.org/pub/pdb/validation_reports/xj/6xjd | HTTPS FTP |
-Related structure data
Related structure data | 22206MC 6x59C 6x5aC C: citing same article (ref.) M: map data used to model this data |
---|---|
Similar structure data |
-Links
-Assembly
Deposited unit |
|
---|---|
1 |
|
-Components
-Protein , 5 types, 10 molecules AEBFCGDHKL
#1: Protein | Mass: 15257.838 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) Gene: H3C15, HIST2H3A, H3C14, H3F2, H3FM, HIST2H3C, H3C13, HIST2H3D Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: Q71DI3 #2: Protein | Mass: 11263.231 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) Gene: HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, ...Gene: HIST1H4A, H4/A, H4FA, HIST1H4B, H4/I, H4FI, HIST1H4C, H4/G, H4FG, HIST1H4D, H4/B, H4FB, HIST1H4E, H4/J, H4FJ, HIST1H4F, H4/C, H4FC, HIST1H4H, H4/H, H4FH, HIST1H4I, H4/M, H4FM, HIST1H4J, H4/E, H4FE, HIST1H4K, H4/D, H4FD, HIST1H4L, H4/K, H4FK, HIST2H4A, H4/N, H4F2, H4FN, HIST2H4, HIST2H4B, H4/O, H4FO, HIST4H4 Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P62805 #3: Protein | Mass: 13990.342 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) Gene: H2AC11, H2AFP, HIST1H2AG, H2AC13, H2AFC, HIST1H2AI, H2AC15, H2AFD, HIST1H2AK, H2AC16, H2AFI, HIST1H2AL, H2AC17, H2AFN, HIST1H2AM Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P0C0S8 #4: Protein | Mass: 13795.980 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Homo sapiens (human) Gene: H2BC4, H2BFL, HIST1H2BC, H2BC6, H2BFH, HIST1H2BE, H2BC7, H2BFG, HIST1H2BF, H2BC8, H2BFA, HIST1H2BG, H2BC10, H2BFK, HIST1H2BI Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: P62807 #7: Protein | Mass: 43647.352 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Mus musculus (house mouse) / Gene: Cgas, Mb21d1 / Production host: Escherichia coli BL21(DE3) (bacteria) / References: UniProt: Q8C6L5, cyclic GMP-AMP synthase |
---|
-DNA chain , 2 types, 2 molecules IJ
#5: DNA chain | Mass: 45145.754 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) Homo sapiens (human) |
---|---|
#6: DNA chain | Mass: 45604.047 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) Homo sapiens (human) |
-Non-polymers , 1 types, 2 molecules
#8: Chemical |
---|
-Details
Has ligand of interest | N |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-Sample preparation
Component |
| |||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Source (natural) |
| |||||||||||||||||||||||||||||||||||
Source (recombinant) |
| |||||||||||||||||||||||||||||||||||
Buffer solution | pH: 7.4 | |||||||||||||||||||||||||||||||||||
Specimen | Conc.: 0.4 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES | |||||||||||||||||||||||||||||||||||
Vitrification | Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 298 K |
-Electron microscopy imaging
Experimental equipment | Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 1800 nm / Nominal defocus min: 700 nm / Cs: 2.7 mm |
Image recording | Electron dose: 48 e/Å2 / Detector mode: COUNTING / Film or detector model: GATAN K2 SUMMIT (4k x 4k) |
-Processing
Software | Name: PHENIX / Version: 1.16_3549: / Classification: refinement | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EM software |
| ||||||||||||||||||||||||
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||
Symmetry | Point symmetry: C1 (asymmetric) | ||||||||||||||||||||||||
3D reconstruction | Resolution: 6.8 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 9454 / Symmetry type: POINT | ||||||||||||||||||||||||
Refine LS restraints |
|