[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleStructural Studies Reveal the Role of Helix 68 in the Elongation Step of Protein Biosynthesis.
Journal, issue, pagesmBio, Vol. 13, Issue 2, Page e0030622, Year 2022
Publish dateApr 26, 2022
AuthorsGiuseppe Cimicata / Gil Fridkin / Tanaya Bose / Zohar Eyal / Yehuda Halfon / Elinor Breiner-Goldstein / Tara Fox / Ella Zimmerman / Anat Bashan / Natalia de Val / Alexander Wlodawer / Ada Yonath /
PubMed AbstractThe ribosome, a multicomponent assembly consisting of RNA and proteins, is a pivotal macromolecular machine that translates the genetic code into proteins. The large ribosomal subunit rRNA helix 68 ...The ribosome, a multicomponent assembly consisting of RNA and proteins, is a pivotal macromolecular machine that translates the genetic code into proteins. The large ribosomal subunit rRNA helix 68 (H68) is a key element in the protein synthesis process, as it coordinates the coupled movements of the actors involved in translocation, including the tRNAs and L1 stalk. Examination of cryo-electron microscopy (cryo-EM) structures of ribosomes incubated for various time durations at physiological temperatures led to the identification of functionally relevant H68 movements. These movements assist the transition of the L1 stalk between its open and closed states. H68 spatial flexibility and its significance to the protein synthesis process were confirmed through its effective targeting with antisense PNA oligomers. Our results suggest that H68 is actively involved in ribosome movements that are central to the elongation process. The mechanism that regulates the translocation step in ribosomes during protein synthesis is not fully understood. In this work, cryo-EM techniques used to image ribosomes from Staphylococcus aureus after incubation at physiological temperature allowed the identification of a conformation of the helix 68 that has never been observed so far. We then propose a mechanism in which such helix, switching between two different conformations, actively coordinates the translocation step, shedding light on the dynamics of ribosomal components. In addition, the relevance of helix 68 to ribosome function and its potential as an antibiotic target was proved by inhibiting Staphylococcus aureus ribosomes activity using oligomers with sequence complementarity.
External linksmBio / PubMed:35348349 / PubMed Central
MethodsEM (single particle)
Resolution2.48 - 3.11 Å
Structure data

EMDB-0243, PDB-6hma:
Improved model derived from cryo-EM map of Staphylococcus aureus large ribosomal subunit
Method: EM (single particle) / Resolution: 2.65 Å

EMDB-11900, PDB-7asm:
Staphylococcus aureus 50S after 30 minutes incubation at 37C
Method: EM (single particle) / Resolution: 2.48 Å

EMDB-11901, PDB-7asn:
Staphylococcus aureus 50S after 30 minutes incubation a 37C
Method: EM (single particle) / Resolution: 2.73 Å

EMDB-11902, PDB-7aso:
Staphylococcus aureus 70S after 30 minutes incubation at 37C
Method: EM (single particle) / Resolution: 3.11 Å

EMDB-11903, PDB-7asp:
Staphylococcus aureus 70S after 50 minutes incubation at 37C
Method: EM (single particle) / Resolution: 2.86 Å

Chemicals

ChemComp-MG:
Unknown entry

Source
  • staphylococcus aureus (bacteria)
KeywordsRIBOSOME / ribosomal RNA / pathogen / ribosomal protein / cryo-EM / H68 / translation / protein synthesis

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more