7U66
| Structure of E. coli dGTPase bound to T7 bacteriophage protein Gp1.2 and dGTP | 分子名称: | 2'-DEOXYGUANOSINE-5'-TRIPHOSPHATE, Deoxyguanosinetriphosphate triphosphohydrolase, Inhibitor of dGTPase, ... | 著者 | Klemm, B.P, Dillard, L.B, Borgnia, M.J, Schaaper, R.M. | 登録日 | 2022-03-03 | 公開日 | 2022-08-31 | 最終更新日 | 2024-06-12 | 実験手法 | ELECTRON MICROSCOPY (3.1 Å) | 主引用文献 | Mechanism by which T7 bacteriophage protein Gp1.2 inhibits Escherichia coli dGTPase. Proc.Natl.Acad.Sci.USA, 119, 2022
|
|
7TU6
| Structure of the L. blandensis dGTPase bound to dATP | 分子名称: | 2'-DEOXYADENOSINE 5'-TRIPHOSPHATE, MAGNESIUM ION, dGTP triphosphohydrolase | 著者 | Klemm, B.P, Sikkema, A.P, Hsu, A.L, Borgnia, M.J, Schaaper, R.M. | 登録日 | 2022-02-02 | 公開日 | 2022-06-01 | 最終更新日 | 2024-02-21 | 実験手法 | ELECTRON MICROSCOPY (2.7 Å) | 主引用文献 | High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP. J.Biol.Chem., 298, 2022
|
|
7TU7
| Structure of the L. blandensis dGTPase H125A mutant bound to dGTP | 分子名称: | 2'-DEOXYGUANOSINE-5'-TRIPHOSPHATE, MAGNESIUM ION, dGTP triphosphohydrolase | 著者 | Klemm, B.P, Sikkema, A.P, Hsu, A.L, Borgnia, M.J, Schaaper, R.M. | 登録日 | 2022-02-02 | 公開日 | 2022-06-01 | 最終更新日 | 2024-02-21 | 実験手法 | ELECTRON MICROSCOPY (2.5 Å) | 主引用文献 | High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP. J.Biol.Chem., 298, 2022
|
|
7TU8
| Structure of the L. blandensis dGTPase H125A mutant bound to dGTP and dATP | 分子名称: | 2'-DEOXYADENOSINE 5'-TRIPHOSPHATE, 2'-DEOXYGUANOSINE-5'-TRIPHOSPHATE, MAGNESIUM ION, ... | 著者 | Klemm, B.P, Sikkema, A.P, Hsu, A.L, Borgnia, M.J, Schaaper, R.M. | 登録日 | 2022-02-02 | 公開日 | 2022-06-01 | 最終更新日 | 2024-02-21 | 実験手法 | ELECTRON MICROSCOPY (2.6 Å) | 主引用文献 | High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP. J.Biol.Chem., 298, 2022
|
|
7TU5
| Structure of the L. blandensis dGTPase in the apo form | 分子名称: | MAGNESIUM ION, dGTP triphosphohydrolase | 著者 | Klemm, B.P, Sikkema, A.P, Hsu, A.L, Borgnia, M.J, Schaaper, R.M. | 登録日 | 2022-02-02 | 公開日 | 2022-06-01 | 最終更新日 | 2024-02-21 | 実験手法 | ELECTRON MICROSCOPY (2.1 Å) | 主引用文献 | High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP. J.Biol.Chem., 298, 2022
|
|
7U65
| Structure of E. coli dGTPase bound to T7 bacteriophage protein Gp1.2 | 分子名称: | Deoxyguanosinetriphosphate triphosphohydrolase, Inhibitor of dGTPase | 著者 | Klemm, B.P, Hsu, A.L, Borgnia, M.J, Schaaper, R.M. | 登録日 | 2022-03-03 | 公開日 | 2022-08-31 | 最終更新日 | 2024-09-25 | 実験手法 | ELECTRON MICROSCOPY (2.8 Å) | 主引用文献 | Mechanism by which T7 bacteriophage protein Gp1.2 inhibits Escherichia coli dGTPase. Proc.Natl.Acad.Sci.USA, 119, 2022
|
|
7U67
| Structure of E. coli dGTPase bound to T7 bacteriophage protein Gp1.2 and GTP | 分子名称: | Deoxyguanosinetriphosphate triphosphohydrolase, GUANOSINE-5'-TRIPHOSPHATE, Inhibitor of dGTPase, ... | 著者 | Klemm, B.P, Hsu, A.L, Borgnia, M.J, Schaaper, R.M. | 登録日 | 2022-03-03 | 公開日 | 2022-08-31 | 最終更新日 | 2024-06-12 | 実験手法 | ELECTRON MICROSCOPY (2.5 Å) | 主引用文献 | Mechanism by which T7 bacteriophage protein Gp1.2 inhibits Escherichia coli dGTPase. Proc.Natl.Acad.Sci.USA, 119, 2022
|
|
7LWZ
| Apo Structure of Vibrio cholerae dGTPase protein VC1979 | 分子名称: | Deoxyguanosinetriphosphate triphosphohydrolase-like protein 1, NICKEL (II) ION | 著者 | Sikkema, A.P, Horng, J, Klemm, B.P, Schaaper, R.M, Hall, T.M.T. | 登録日 | 2021-03-02 | 公開日 | 2021-03-10 | 最終更新日 | 2023-10-18 | 実験手法 | X-RAY DIFFRACTION (2.32 Å) | 主引用文献 | Structure of Vibrio cholerae dGTPase protein VC1979 To Be Published
|
|
7TU4
| Structure of the L. blandensis dGTPase del55-58 mutant bound to Mn | 分子名称: | 1,2-ETHANEDIOL, MANGANESE (II) ION, SULFATE ION, ... | 著者 | Sikkema, A.P, Klemm, B.P, Horng, J.C, Hall, T.M.T. | 登録日 | 2022-02-02 | 公開日 | 2022-06-01 | 最終更新日 | 2023-10-18 | 実験手法 | X-RAY DIFFRACTION (2.26 Å) | 主引用文献 | High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP. J.Biol.Chem., 298, 2022
|
|
7TU0
| Structure of the L. blandensis dGTPase bound to Mn | 分子名称: | MANGANESE (II) ION, SULFATE ION, dGTP triphosphohydrolase | 著者 | Sikkema, A.P, Klemm, B.P, Horng, J.C, Hall, T.M.T. | 登録日 | 2022-02-02 | 公開日 | 2022-06-01 | 最終更新日 | 2023-10-18 | 実験手法 | X-RAY DIFFRACTION (2.04 Å) | 主引用文献 | High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP. J.Biol.Chem., 298, 2022
|
|
7TU1
| Structure of the L. blandensis dGTPase R37A mutant | 分子名称: | 1,2-ETHANEDIOL, SULFATE ION, dGTP triphosphohydrolase | 著者 | Sikkema, A.P, Klemm, B.P, Horng, J.C, Hall, T.M.T. | 登録日 | 2022-02-02 | 公開日 | 2022-06-01 | 最終更新日 | 2023-10-18 | 実験手法 | X-RAY DIFFRACTION (1.8 Å) | 主引用文献 | High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP. J.Biol.Chem., 298, 2022
|
|
7TU2
| Structure of the L. blandensis dGTPase R37A mutant bound to Mn | 分子名称: | MANGANESE (II) ION, SULFATE ION, dGTP triphosphohydrolase | 著者 | Sikkema, A.P, Klemm, B.P, Horng, J.C, Hall, T.M.T. | 登録日 | 2022-02-02 | 公開日 | 2022-06-01 | 最終更新日 | 2023-10-18 | 実験手法 | X-RAY DIFFRACTION (2.13 Å) | 主引用文献 | High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP. J.Biol.Chem., 298, 2022
|
|
7TU3
| Structure of the L. blandensis dGTPase del55-58 mutant | 分子名称: | 1,2-ETHANEDIOL, MAGNESIUM ION, SULFATE ION, ... | 著者 | Sikkema, A.P, Klemm, B.P, Horng, J.C, Hall, T.M.T. | 登録日 | 2022-02-02 | 公開日 | 2022-06-01 | 最終更新日 | 2023-10-18 | 実験手法 | X-RAY DIFFRACTION (2.17 Å) | 主引用文献 | High-resolution structures of the SAMHD1 dGTPase homolog from Leeuwenhoekiella blandensis reveal a novel mechanism of allosteric activation by dATP. J.Biol.Chem., 298, 2022
|
|