8XTF
Crystal structure of methyltransferase MpaG' in complex with SAH and FDHMP-3C
This is a non-PDB format compatible entry.
Summary for 8XTF
Entry DOI | 10.2210/pdb8xtf/pdb |
Related | 8XTE |
Descriptor | O-methyltransferase mpaG', S-ADENOSYL-L-HOMOCYSTEINE, 4-farnesyl-3,5-dihydroxy-6-methylphthalide-3C, ... (4 entities in total) |
Functional Keywords | methyltransferase, mpag', mpa biosynthesis, biosynthetic protein |
Biological source | Penicillium brevicompactum |
Total number of polymer chains | 1 |
Total formula weight | 44451.92 |
Authors | |
Primary citation | You, C.,Pan, Y.,Liu, R.,Li, S.,Feng, Y. Structural basis for substrate flexibility of the O-methyltransferase MpaG' involved in mycophenolic acid biosynthesis. Protein Sci., 33:e5144-e5144, 2024 Cited by PubMed Abstract: MpaG' is an S-adenosyl-L-methionine (SAM)-dependent methyltransferase involved in the compartmentalized biosynthesis of mycophenolic acid (MPA), a first-line immunosuppressive drug for organ transplantations and autoimmune diseases. MpaG' catalyzes the 5-O-methylation of three precursors in MPA biosynthesis including demethylmycophenolic acid (DMMPA), 4-farnesyl-3,5-dihydroxy-6-methylphthalide (FDHMP), and an intermediate containing three fewer carbon atoms compared to FDHMP (FDHMP-3C) with different catalytic efficiencies. Here, we report the crystal structures of S-adenosyl-L-homocysteine (SAH)/DMMPA-bound MpaG', SAH/FDHMP-3C-bound MpaG', and SAH/FDHMP-bound MpaG' to understand the catalytic mechanism of MpaG' and structural basis for its substrate flexibility. Structural and biochemical analyses reveal that MpaG' utilizes the catalytic dyad H306-E362 to deprotonate the C5 hydroxyl group of the substrates for the following methylation. The three substrates with differently modified farnesyl moieties are well accommodated in a large semi-open substrate binding pocket with the orientation of their phthalide moiety almost identical. Based on the structure-directed mutagenesis, a single mutant MpaG' is engineered with significantly improved catalytic efficiency for all three substrates. This study expands the mechanistic understanding and the pocket engineering strategy for O-methyltransferases involved in fungal natural product biosynthesis. Our research also highlights the potential of O-methyltransferases to modify diverse substrates by protein design and engineering. PubMed: 39150221DOI: 10.1002/pro.5144 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.13 Å) |
Structure validation
Download full validation report