Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

8QZP

Structure of the non-mitochondrial citrate synthase from Ananas comosus

Summary for 8QZP
Entry DOI10.2210/pdb8qzp/pdb
EMDB information18779
DescriptorCitrate synthase (1 entity in total)
Functional Keywordscomplex, transferase
Biological sourceAnanas comosus (pineapple)
Total number of polymer chains8
Total formula weight460894.41
Authors
Lo, Y.K.,Bohn, S.,Sendker, F.L.,Schuller, J.M.,Hochberg, G. (deposition date: 2023-10-28, release date: 2024-07-24)
Primary citationSendker, F.L.,Schlotthauer, T.,Mais, C.N.,Lo, Y.K.,Girbig, M.,Bohn, S.,Heimerl, T.,Schindler, D.,Weinstein, A.,Metzger, B.P.,Thornton, J.W.,Pillai, A.,Bange, G.,Schuller, J.M.,Hochberg, G.K.A.
Frequent transitions in self-assembly across the evolution of a central metabolic enzyme.
Biorxiv, 2024
Cited by
PubMed Abstract: Many enzymes assemble into homomeric protein complexes comprising multiple copies of one protein. Because structural form is usually assumed to follow function in biochemistry, these assemblies are thought to evolve because they provide some functional advantage. In many cases, however, no specific advantage is known and, in some cases, quaternary structure varies among orthologs. This has led to the proposition that self-assembly may instead vary neutrally within protein families. The extent of such variation has been difficult to ascertain because quaternary structure has until recently been difficult to measure on large scales. Here, we employ mass photometry, phylogenetics, and structural biology to interrogate the evolution of homo-oligomeric assembly across the entire phylogeny of prokaryotic citrate synthases - an enzyme with a highly conserved function. We discover a menagerie of different assembly types that come and go over the course of evolution, including cases of parallel evolution and reversions from complex to simple assemblies. Functional experiments in vitro and in vivo indicate that evolutionary transitions between different assemblies do not strongly influence enzyme catalysis. Our work suggests that enzymes can wander relatively freely through a large space of possible assemblies and demonstrates the power of characterizing structure-function relationships across entire phylogenies.
PubMed: 39005358
DOI: 10.1101/2024.07.05.602260
PDB entries with the same primary citation
Experimental method
ELECTRON MICROSCOPY (4.15 Å)
Structure validation

236620

PDB entries from 2025-05-28

PDB statisticsPDBj update infoContact PDBjnumon