8KH4
Cryo-EM structure of the GPR161-Gs complex
8KH4 の概要
| エントリーDOI | 10.2210/pdb8kh4/pdb |
| EMDBエントリー | 37236 |
| 分子名称 | G-protein coupled receptor 161, Guanine nucleotide-binding protein G(olf) subunit alpha,Guanine nucleotide-binding protein G(s) subunit alpha isoforms short, Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1, ... (6 entities in total) |
| 機能のキーワード | gpcr, gs, membrane protein |
| 由来する生物種 | Homo sapiens (human) 詳細 |
| タンパク質・核酸の鎖数 | 5 |
| 化学式量合計 | 135873.03 |
| 構造登録者 | |
| 主引用文献 | Nie, Y.,Qiu, Z.,Chen, S.,Chen, Z.,Song, X.,Ma, Y.,Huang, N.,Cyster, J.G.,Zheng, S. Specific binding of GPR174 by endogenous lysophosphatidylserine leads to high constitutive G s signaling. Nat Commun, 14:5901-5901, 2023 Cited by PubMed Abstract: Many orphan G protein-coupled receptors (GPCRs) remain understudied because their endogenous ligands are unknown. Here, we show that a group of class A/rhodopsin-like orphan GPCRs including GPR61, GPR161 and GPR174 increase the cAMP level similarly to fully activated D1 dopamine receptor (D1R). We report cryo-electron microscopy structures of the GPR61‒G, GPR161‒G and GPR174‒G complexes without any exogenous ligands. The GPR174 structure reveals that endogenous lysophosphatidylserine (lysoPS) is copurified. While GPR174 fails to respond to exogenous lysoPS, likely owing to its maximal activation by the endogenous ligand, GPR174 mutants with lower ligand binding affinities can be specifically activated by lysoPS but not other lipids, in a dose-dependent manner. Moreover, GPR174 adopts a non-canonical G coupling mode. The structures of GPR161 and GPR61 reveal that the second extracellular loop (ECL2) penetrates into the orthosteric pocket, possibly contributing to constitutive activity. Our work definitively confirms lysoPS as an endogenous GPR174 ligand and suggests that high constitutive activity of some orphan GPCRs could be accounted for by their having naturally abundant ligands. PubMed: 37737235DOI: 10.1038/s41467-023-41654-3 主引用文献が同じPDBエントリー |
| 実験手法 | ELECTRON MICROSCOPY (3.1 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード






