7VWL
Membrane arm of deactive state CI from rotenone-NADH dataset
Summary for 7VWL
Entry DOI | 10.2210/pdb7vwl/pdb |
EMDB information | 32155 |
Descriptor | NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6, NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial, ... (36 entities in total) |
Functional Keywords | mammalian, mitochondrial, respiratory, complex i, electron transport |
Biological source | Sus scrofa (pig) More |
Total number of polymer chains | 29 |
Total formula weight | 568229.06 |
Authors | |
Primary citation | Gu, J.,Liu, T.,Guo, R.,Zhang, L.,Yang, M. The coupling mechanism of mammalian mitochondrial complex I. Nat.Struct.Mol.Biol., 29:172-182, 2022 Cited by PubMed Abstract: Mammalian respiratory complex I (CI) is a 45-subunit, redox-driven proton pump that generates an electrochemical gradient across the mitochondrial inner membrane to power ATP synthesis in mitochondria. In the present study, we report cryo-electron microscopy structures of CI from Sus scrofa in six treatment conditions at a resolution of 2.4-3.5 Å, in which CI structures of each condition can be classified into two biochemical classes (active or deactive), with a notably higher proportion of active CI particles. These structures illuminate how hydrophobic ubiquinone-10 (Q10) with its long isoprenoid tail is bound and reduced in a narrow Q chamber comprising four different Q10-binding sites. Structural comparisons of active CI structures from our decylubiquinone-NADH and rotenone-NADH datasets reveal that Q10 reduction at site 1 is not coupled to proton pumping in the membrane arm, which might instead be coupled to Q10 oxidation at site 2. Our data overturn the widely accepted previous proposal about the coupling mechanism of CI. PubMed: 35145322DOI: 10.1038/s41594-022-00722-w PDB entries with the same primary citation |
Experimental method | ELECTRON MICROSCOPY (2.7 Å) |
Structure validation
Download full validation report