7RHT
Importin alpha 7 delta IBB (KPNA6)
Summary for 7RHT
Entry DOI | 10.2210/pdb7rht/pdb |
Descriptor | Importin subunit alpha-7 (2 entities in total) |
Functional Keywords | transportin, protein transport |
Biological source | Homo sapiens (Human) |
Total number of polymer chains | 1 |
Total formula weight | 52978.10 |
Authors | Tsimbalyuk, S.,Forwood, J.K. (deposition date: 2021-07-18, release date: 2022-02-23, Last modification date: 2023-10-25) |
Primary citation | Tsimbalyuk, S.,Donnelly, C.M.,Forwood, J.K. Structural characterization of human importin alpha 7 in its cargo-free form at 2.5 angstrom resolution. Sci Rep, 12:315-315, 2022 Cited by PubMed Abstract: Shuttling of macromolecules between nucleus and cytoplasm is a tightly regulated process mediated through specific interactions between cargo and nuclear transport proteins. In the classical nuclear import pathway, importin alpha recognizes cargo exhibiting a nuclear localization signal, and this complex is transported through the nuclear pore complex by importin beta. Humans possess seven importin alpha isoforms that can be grouped into three subfamilies, with many cargoes displaying specificity towards these importin alpha isoforms. The cargo binding sites within importin alpha isoforms are highly conserved in sequence, suggesting that specificity potentially relies on structural differences. Structures of some importin alpha isoforms, both in cargo-bound and free states, have been previously solved. However, there are currently no known structures of cargo free importin alpha isoforms within subfamily 3 (importin alpha 5, 6, 7). Here, we present the first crystal structure of human importin alpha 7 lacking the IBB domain solved at 2.5 Å resolution. The structure reveals a typical importin alpha architecture comprised of ten armadillo repeats and is most structurally conserved with importin alpha 5. Very little difference in structure was observed between the cargo-bound and free states, implying that importin alpha 7 does not undergo conformational change when binding cargo. These structural insights provide a strong platform for further evaluation of structure-function relationships and understanding how isoform specificity within the importin alpha family plays a role in nuclear transport in health and disease. PubMed: 35013395DOI: 10.1038/s41598-021-03729-3 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.5 Å) |
Structure validation
Download full validation report