Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

6TN7

Crystal structure of the human Arc C-lobe

Summary for 6TN7
Entry DOI10.2210/pdb6tn7/pdb
DescriptorActivity-regulated cytoskeleton-associated protein, GLYCEROL (3 entities in total)
Functional Keywordsarc, capsid homology, protein binding
Biological sourceHomo sapiens (Human)
Total number of polymer chains1
Total formula weight11357.89
Authors
Hallin, E.I.,Bramham, C.R.,Kursula, P. (deposition date: 2019-12-06, release date: 2020-12-16, Last modification date: 2024-01-24)
Primary citationHallin, E.I.,Bramham, C.R.,Kursula, P.
Structural properties and peptide ligand binding of the capsid homology domains of human Arc.
Biochem Biophys Rep, 26:100975-100975, 2021
Cited by
PubMed Abstract: The activity-regulated cytoskeleton-associated protein (Arc) is important for synaptic plasticity and the normal function of the brain. Arc interacts with neuronal postsynaptic proteins, but the mechanistic details of its function have not been fully established. The C-terminal domain of Arc consists of tandem domains, termed the N- and C-lobe. The N-lobe harbours a peptide binding site, able to bind multiple targets. By measuring the affinity of human Arc towards various peptides from stargazin and guanylate kinase-associated protein (GKAP), we have refined its specificity determinants. We found two sites in the GKAP repeat region that bind to Arc and confirmed these interactions by X-ray crystallography. Phosphorylation of the stargazin peptide did not affect binding affinity but caused changes in thermodynamic parameters. Comparison of the crystal structures of three high-resolution human Arc-peptide complexes identifies three conserved C-H…π interactions at the binding cavity, explaining the sequence specificity of short linear motif binding by Arc. We further characterise central residues of the Arc lobe fold, show the effects of peptide binding on protein dynamics, and identify acyl carrier proteins as structures similar to the Arc lobes. We hypothesise that Arc may affect protein-protein interactions and phase separation at the postsynaptic density, affecting protein turnover and re-modelling of the synapse. The present data on Arc structure and ligand binding will help in further deciphering these processes.
PubMed: 33732907
DOI: 10.1016/j.bbrep.2021.100975
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.67 Å)
Structure validation

236963

PDB entries from 2025-06-04

PDB statisticsPDBj update infoContact PDBjnumon