6M54
Human apo ferritin frozen on TEM grid with Amorphous nickel titanium alloy supporting film
Summary for 6M54
Entry DOI | 10.2210/pdb6m54/pdb |
Related | 2FHA 6M52 |
EMDB information | 30083 30084 |
Descriptor | Ferritin heavy chain, FE (II) ION (3 entities in total) |
Functional Keywords | apoferritin heavy chain, homo sapiens, metal transport, oxidoreductase |
Biological source | Homo sapiens (Human) |
Total number of polymer chains | 24 |
Total formula weight | 510470.81 |
Authors | |
Primary citation | Huang, X.,Zhang, L.,Wen, Z.,Chen, H.,Li, S.,Ji, G.,Yin, C.C.,Sun, F. Amorphous nickel titanium alloy film: A new choice for cryo electron microscopy sample preparation. Prog.Biophys.Mol.Biol., 156:3-13, 2020 Cited by PubMed Abstract: Cryo-electron microscopy (cryoEM) has become one of the most important approach for structural biology. However, barriers are still there for an increased successful rate, a better resolution and improved efficiency from sample preparation, data collection to image processing. CryoEM sample preparation is one of the bottlenecks with many efforts made recently, including the optimization of supporting substrate (e.g. ultra-thin carbon, graphene, pure gold, 2d crystal of streptavidin, and affinity modification), which was aimed to solve air-water interface problem, or reduce beam induced motion (BIM), or change particle distribution in the grid hole. Here, we report another effort of developing a new supporting substrate, the amorphous nickel-titanium alloy (ANTA) film, for cryoEM sample preparation as a layer of holey supporting film covering on TEM grid. Our investigations showed advantages of ANTA film in comparison with conventional carbon film, including much better electron conductivity and trace non-specific interaction with protein. These advantages yield less BIM and significantly improved particle distribution during cryoEM experiment of human apo-ferritn, thus resulting an improved reconstruction resolution from a reduced number of micrographs and particles. Unlike the pure gold film, the usage of the ANTA film is just same with the carbon film, compatible to conventional automatic cryoEM data collection procedure. PubMed: 32758492DOI: 10.1016/j.pbiomolbio.2020.07.009 PDB entries with the same primary citation |
Experimental method | ELECTRON MICROSCOPY (2.4 Å) |
Structure validation
Download full validation report