6JDV
Crystal structure of Nme1Cas9 in complex with sgRNA and target DNA (ATATGATT PAM) in catalytic state
Summary for 6JDV
Entry DOI | 10.2210/pdb6jdv/pdb |
Descriptor | CRISPR-associated endonuclease Cas9, sgRNA, target DNA strand, ... (7 entities in total) |
Functional Keywords | crispr-cas9, nmecas9, nme1cas9, hydrolase, ternary complex, hydrolase-rna-dna complex, hydrolase/rna/dna |
Biological source | Neisseria meningitidis serogroup C (strain 8013) More |
Total number of polymer chains | 4 |
Total formula weight | 185820.16 |
Authors | |
Primary citation | Sun, W.,Yang, J.,Cheng, Z.,Amrani, N.,Liu, C.,Wang, K.,Ibraheim, R.,Edraki, A.,Huang, X.,Wang, M.,Wang, J.,Liu, L.,Sheng, G.,Yang, Y.,Lou, J.,Sontheimer, E.J.,Wang, Y. Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States. Mol.Cell, 76:938-, 2019 Cited by PubMed Abstract: High-resolution Cas9 structures have yet to reveal catalytic conformations due to HNH nuclease domain positioning away from the cleavage site. Nme1Cas9 and Nme2Cas9 are compact nucleases for in vivo genome editing. Here, we report structures of meningococcal Cas9 homologs in complex with sgRNA, dsDNA, or the AcrIIC3 anti-CRISPR protein. DNA-bound structures represent an early step of target recognition, a later HNH pre-catalytic state, the HNH catalytic state, and a cleaved-target-DNA-bound state. In the HNH catalytic state of Nme1Cas9, the active site is seen poised at the scissile phosphodiester linkage of the target strand, providing a high-resolution view of the active conformation. The HNH active conformation activates the RuvC domain. Our structures explain how Nme1Cas9 and Nme2Cas9 read distinct PAM sequences and how AcrIIC3 inhibits Nme1Cas9 activity. These structures provide insights into Cas9 domain rearrangements, guide-target engagement, cleavage mechanism, and anti-CRISPR inhibition, facilitating the optimization of these genome-editing platforms. PubMed: 31668930DOI: 10.1016/j.molcel.2019.09.025 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (3.1 Å) |
Structure validation
Download full validation report