Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

6G2H

Filament of acetyl-CoA carboxylase and BRCT domains of BRCA1 (ACC-BRCT) core at 4.6 A resolution

This is a non-PDB format compatible entry.
Summary for 6G2H
Entry DOI10.2210/pdb6g2h/pdb
EMDB information4342 4343
DescriptorAcetyl-CoA carboxylase 1 (1 entity in total)
Functional Keywordsfilament, helical, multienzyme, ligase, biotin-dependent carboxylase
Biological sourceHomo sapiens (Human)
Total number of polymer chains6
Total formula weight1635797.06
Authors
Hunkeler, M.,Hagmann, A.,Stuttfeld, E.,Chami, M.,Stahlberg, H.,Maier, T. (deposition date: 2018-03-23, release date: 2018-06-13, Last modification date: 2024-05-15)
Primary citationHunkeler, M.,Hagmann, A.,Stuttfeld, E.,Chami, M.,Guri, Y.,Stahlberg, H.,Maier, T.
Structural basis for regulation of human acetyl-CoA carboxylase.
Nature, 558:470-474, 2018
Cited by
PubMed Abstract: Acetyl-CoA carboxylase catalyses the ATP-dependent carboxylation of acetyl-CoA, a rate-limiting step in fatty acid biosynthesis. Eukaryotic acetyl-CoA carboxylases are large, homodimeric multienzymes. Human acetyl-CoA carboxylase occurs in two isoforms: the metabolic, cytosolic ACC1, and ACC2, which is anchored to the outer mitochondrial membrane and controls fatty acid β-oxidation. ACC1 is regulated by a complex interplay of phosphorylation, binding of allosteric regulators and protein-protein interactions, which is further linked to filament formation. These filaments were discovered in vitro and in vivo 50 years ago, but the structural basis of ACC1 polymerization and regulation remains unknown. Here, we identify distinct activated and inhibited ACC1 filament forms. We obtained cryo-electron microscopy structures of an activated filament that is allosterically induced by citrate (ACC-citrate), and an inactivated filament form that results from binding of the BRCT domains of the breast cancer type 1 susceptibility protein (BRCA1). While non-polymeric ACC1 is highly dynamic, filament formation locks ACC1 into different catalytically competent or incompetent conformational states. This unique mechanism of enzyme regulation via large-scale conformational changes observed in ACC1 has potential uses in engineering of switchable biosynthetic systems. Dissecting the regulation of acetyl-CoA carboxylase opens new paths towards counteracting upregulation of fatty acid biosynthesis in disease.
PubMed: 29899443
DOI: 10.1038/s41586-018-0201-4
PDB entries with the same primary citation
Experimental method
ELECTRON MICROSCOPY (4.6 Å)
Structure validation

227111

數據於2024-11-06公開中

PDB statisticsPDBj update infoContact PDBjnumon