Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

5YWR

Crystal Structure of RING E3 ligase ZNRF1 in complex with Ube2N (Ubc13)

Summary for 5YWR
Entry DOI10.2210/pdb5ywr/pdb
DescriptorUbiquitin-conjugating enzyme E2 N, E3 ubiquitin-protein ligase ZNRF1, TRIETHYLENE GLYCOL, ... (6 entities in total)
Functional Keywordsubiquitin e3 ligase, znrf1, ubiquitin conjugating e2, ube2n, ubc13, signaling protein
Biological sourceHomo sapiens (Human)
More
Total number of polymer chains2
Total formula weight27574.73
Authors
Behera, A.P.,Naskar, P.,Datta, A.B. (deposition date: 2017-11-30, release date: 2018-06-06, Last modification date: 2024-03-27)
Primary citationBehera, A.P.,Naskar, P.,Agarwal, S.,Banka, P.A.,Poddar, A.,Datta, A.B.
Structural insights into the nanomolar affinity of RING E3 ligase ZNRF1 for Ube2N and its functional implications.
Biochem. J., 475:1569-1582, 2018
Cited by
PubMed Abstract: RING (eally nteresting ew ene) domains in ubiquitin RING E3 ligases exclusively engage ubiquitin (Ub)-loaded E2s to facilitate ubiquitination of their substrates. Despite such specificity, all RINGs characterized till date bind unloaded E2s with dissociation constants (s) in the micromolar to the sub-millimolar range. Here, we show that the RING domain of E3 ligase ZNRF1, an essential E3 ligase implicated in diverse cellular pathways, binds Ube2N with a of ∼50 nM. This high-affinity interaction is exclusive for Ube2N as ZNRF1 interacts with Ube2D2 with a of ∼1 µM, alike few other E3s. The crystal structure of ZNRF1 C-terminal domain in complex with Ube2N coupled with mutational analyses reveals the molecular basis of this unusual affinity. We further demonstrate that the ubiquitination efficiency of ZNRF1 : E2 pairs correlates with their affinity. Intriguingly, as a consequence of its high E2 affinity, an excess of ZNRF1 inhibits Ube2N-mediated ubiquitination at concentrations ≥500 nM instead of showing enhanced ubiquitination. This suggests a novel mode of activity regulation of E3 ligases and emphasizes the importance of E3-E2 balance for the optimum activity. Based on our results, we propose that overexpression-based functional analyses on E3 ligases such as ZNRF1 must be approached with caution as enhanced cellular levels might result in aberrant modification activity.
PubMed: 29626159
DOI: 10.1042/BCJ20170909
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.47 Å)
Structure validation

247536

PDB entries from 2026-01-14

PDB statisticsPDBj update infoContact PDBjnumon