5XZA
Crystal Structure of Phosphofructokinase from Staphylococcus aureus in complex with ADP
Summary for 5XZA
Entry DOI | 10.2210/pdb5xza/pdb |
Descriptor | ATP-dependent 6-phosphofructokinase, ADENOSINE-5'-DIPHOSPHATE, CITRATE ANION, ... (5 entities in total) |
Functional Keywords | phosphofructokinase, staphylococcus aureus, transferase |
Biological source | Staphylococcus aureus (strain NCTC 8325) |
Total number of polymer chains | 1 |
Total formula weight | 36663.12 |
Authors | Wang, C.L.,Tian, T.,Zang, J.Y. (deposition date: 2017-07-12, release date: 2019-03-13, Last modification date: 2023-11-22) |
Primary citation | Tian, T.,Wang, C.L.,Wu, M.H.,Zhang, X.,Zang, J.Y. Structural Insights into the Regulation of Staphylococcus aureus Phosphofructokinase by Tetramer-Dimer Conversion. Biochemistry, 57:4252-4262, 2018 Cited by PubMed Abstract: Most reported bacterial phosphofructokinases (Pfks) are tetramers that exhibit activity allosterically regulated via conformational changes between the R and T states. We report that the Pfk from Staphylococcus aureus NCTC 8325 ( SaPfk) exists as both an active tetramer and an inactive dimer in solution. Multiple effectors, including pH, ADP, ATP, and adenylyl-imidodiphosphate (AMP-PNP), cause equilibrium shifts from the tetramer to dimer, whereas the substrate F6P stabilizes SaPfk tetrameric assembly. Crystal structures of SaPfk in complex with different ligands and biochemical analysis reveal that the flexibility of the Gly150-Leu151 motif in helix α7 plays a role in tetramer-dimer conversion. Thus, we propose a molecular mechanism for allosteric regulation of bacterial Pfk via conversion between the tetramer and dimer in addition to the well-characterized R-state/T-state mechanism. PubMed: 29940104DOI: 10.1021/acs.biochem.8b00028 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.9 Å) |
Structure validation
Download full validation report