Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

5S71

PanDDA analysis group deposition -- Crystal Structure of SARS-CoV-2 NendoU in complex with FUZS-5

Summary for 5S71
Entry DOI10.2210/pdb5s71/pdb
Group depositionPanDDA analysis group deposition (G_1002184)
DescriptorUridylate-specific endoribonuclease, CITRIC ACID, 5'-thiothymidine, ... (4 entities in total)
Functional Keywordssgc - diamond i04-1 fragment screening, pandda, xchemexplorer, nsp15, nendou, sars-cov-2, sars, covid, covid19, hydrolase
Biological sourceSevere acute respiratory syndrome coronavirus 2 (2019-nCoV)
Total number of polymer chains2
Total formula weight79125.91
Authors
Primary citationGodoy, A.S.,Nakamura, A.M.,Douangamath, A.,Song, Y.,Noske, G.D.,Gawriljuk, V.O.,Fernandes, R.S.,Pereira, H.D.M.,Oliveira, K.I.Z.,Fearon, D.,Dias, A.,Krojer, T.,Fairhead, M.,Powell, A.,Dunnet, L.,Brandao-Neto, J.,Skyner, R.,Chalk, R.,Bajusz, D.,Bege, M.,Borbas, A.,Keseru, G.M.,von Delft, F.,Oliva, G.
Allosteric regulation and crystallographic fragment screening of SARS-CoV-2 NSP15 endoribonuclease.
Nucleic Acids Res., 2023
Cited by
PubMed Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019 (COVID-19). The NSP15 endoribonuclease enzyme, known as NendoU, is highly conserved and plays a critical role in the ability of the virus to evade the immune system. NendoU is a promising target for the development of new antiviral drugs. However, the complexity of the enzyme's structure and kinetics, along with the broad range of recognition sequences and lack of structural complexes, hampers the development of inhibitors. Here, we performed enzymatic characterization of NendoU in its monomeric and hexameric form, showing that hexamers are allosteric enzymes with a positive cooperative index, and with no influence of manganese on enzymatic activity. Through combining cryo-electron microscopy at different pHs, X-ray crystallography and biochemical and structural analysis, we showed that NendoU can shift between open and closed forms, which probably correspond to active and inactive states, respectively. We also explored the possibility of NendoU assembling into larger supramolecular structures and proposed a mechanism for allosteric regulation. In addition, we conducted a large fragment screening campaign against NendoU and identified several new allosteric sites that could be targeted for the development of new inhibitors. Overall, our findings provide insights into the complex structure and function of NendoU and offer new opportunities for the development of inhibitors.
PubMed: 37115000
DOI: 10.1093/nar/gkad314
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.941 Å)
Structure validation

230444

PDB entries from 2025-01-22

PDB statisticsPDBj update infoContact PDBjnumon