5NIJ
Crystal structure of arabidopsis thaliana legumain isoform gamma in two-chain activation state
Summary for 5NIJ
| Entry DOI | 10.2210/pdb5nij/pdb |
| Descriptor | Vacuolar-processing enzyme gamma-isozyme, SULFATE ION, CITRIC ACID, ... (4 entities in total) |
| Functional Keywords | asparaginyl endopeptidase, vacuolar processing enzyme, ligase, cysteine protease |
| Biological source | Arabidopsis thaliana (Mouse-ear cress) |
| Cellular location | Vacuole : Q39119 |
| Total number of polymer chains | 4 |
| Total formula weight | 202813.64 |
| Authors | Zauner, F.B.,Dall, E.,Brandstetter, H. (deposition date: 2017-03-24, release date: 2018-02-28, Last modification date: 2024-01-17) |
| Primary citation | Zauner, F.B.,Dall, E.,Regl, C.,Grassi, L.,Huber, C.G.,Cabrele, C.,Brandstetter, H. Crystal Structure of Plant Legumain Reveals a Unique Two-Chain State with pH-Dependent Activity Regulation. Plant Cell, 30:686-699, 2018 Cited by PubMed Abstract: The vacuolar cysteine protease legumain can cleave and selectively rebuild peptide bonds, thereby vastly expanding the sequential repertoire of biomolecules. In this context, plant legumains have recently attracted particular interest. Furthermore, legumains have important roles in many physiological processes, including programmed cell death. Their efficient peptide bond ligase activity has gained tremendous interest in the design of cyclic peptides for drug design. However, the mechanistic understanding of these dual activities is incomplete and partly conflicting. Here, we present the crystal structure of a plant legumain, isoform-γ (AtLEGγ). Employing a conserved legumain fold, the plant legumain AtLEGγ revealed unique mechanisms of autoactivation, including a plant-specific two-chain activation state, which remains conformationally stable at neutral pH, which is a prerequisite for full ligase activity and survival in different cell compartments. The charge distribution around the α6-helix mediates the pH-dependent dimerization and serves as a gatekeeper for the active site, thus regulating its protease and ligase activity. PubMed: 29453229DOI: 10.1105/tpc.17.00963 PDB entries with the same primary citation |
| Experimental method | X-RAY DIFFRACTION (2.75 Å) |
Structure validation
Download full validation report






