Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

5KYH

Structure of Iho670 Flagellar-like Filament

Summary for 5KYH
Entry DOI10.2210/pdb5kyh/pdb
Related3J1R
EMDB information5423 8298
DescriptorIho670 (1 entity in total)
Functional Keywordsimmunoglobulin fold, type iv pili, flagellin, cell adhesion
Biological sourceIgnicoccus hospitalis
Total number of polymer chains21
Total formula weight682952.32
Authors
Braun, T.,Vos, M.,Kalisman, N.,Sherman, N.E.,Rachel, R.,Wirth, R.,Schroeder, G.F.,Egelman, E.H. (deposition date: 2016-07-21, release date: 2016-09-07, Last modification date: 2024-11-13)
Primary citationBraun, T.,Vos, M.R.,Kalisman, N.,Sherman, N.E.,Rachel, R.,Wirth, R.,Schroder, G.F.,Egelman, E.H.
Archaeal flagellin combines a bacterial type IV pilin domain with an Ig-like domain.
Proc.Natl.Acad.Sci.USA, 113:10352-10357, 2016
Cited by
PubMed Abstract: The bacterial flagellar apparatus, which involves ∼40 different proteins, has been a model system for understanding motility and chemotaxis. The bacterial flagellar filament, largely composed of a single protein, flagellin, has been a model for understanding protein assembly. This system has no homology to the eukaryotic flagellum, in which the filament alone, composed of a microtubule-based axoneme, contains more than 400 different proteins. The archaeal flagellar system is simpler still, in some cases having ∼13 different proteins with a single flagellar filament protein. The archaeal flagellar system has no homology to the bacterial one and must have arisen by convergent evolution. However, it has been understood that the N-terminal domain of the archaeal flagellin is a homolog of the N-terminal domain of bacterial type IV pilin, showing once again how proteins can be repurposed in evolution for different functions. Using cryo-EM, we have been able to generate a nearly complete atomic model for a flagellar-like filament of the archaeon Ignicoccus hospitalis from a reconstruction at ∼4-Å resolution. We can now show that the archaeal flagellar filament contains a β-sandwich, previously seen in the FlaF protein that forms the anchor for the archaeal flagellar filament. In contrast to the bacterial flagellar filament, where the outer globular domains make no contact with each other and are not necessary for either assembly or motility, the archaeal flagellin outer domains make extensive contacts with each other that largely determine the interesting mechanical properties of these filaments, allowing these filaments to flex.
PubMed: 27578865
DOI: 10.1073/pnas.1607756113
PDB entries with the same primary citation
Experimental method
ELECTRON MICROSCOPY (4 Å)
Structure validation

227561

PDB entries from 2024-11-20

PDB statisticsPDBj update infoContact PDBjnumon