Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

5KUF

GluK2EM with 2S,4R-4-methylglutamate

Summary for 5KUF
Entry DOI10.2210/pdb5kuf/pdb
Related5KUH
EMDB information8289 8290
DescriptorGlutamate receptor ionotropic, kainate 2, 2S,4R-4-METHYLGLUTAMATE (2 entities in total)
Functional Keywordsgluk2em with 2s, 4r-4-methylglutamate, signaling protein
Biological sourceRattus norvegicus (Rat)
Total number of polymer chains4
Total formula weight396987.47
Authors
Meyerson, J.R.,Chittori, S.,Merk, A.,Rao, P.,Han, T.H.,Serpe, M.,Mayer, M.L.,Subramaniam, S. (deposition date: 2016-07-13, release date: 2016-09-07, Last modification date: 2025-06-04)
Primary citationMeyerson, J.R.,Chittori, S.,Merk, A.,Rao, P.,Han, T.H.,Serpe, M.,Mayer, M.L.,Subramaniam, S.
Structural basis of kainate subtype glutamate receptor desensitization.
Nature, 537:567-571, 2016
Cited by
PubMed Abstract: Glutamate receptors are ligand-gated tetrameric ion channels that mediate synaptic transmission in the central nervous system. They are instrumental in vertebrate cognition and their dysfunction underlies diverse diseases. In both the resting and desensitized states of AMPA and kainate receptor subtypes, the ion channels are closed, whereas the ligand-binding domains, which are physically coupled to the channels, adopt markedly different conformations. Without an atomic model for the desensitized state, it is not possible to address a central problem in receptor gating: how the resting and desensitized receptor states both display closed ion channels, although they have major differences in the quaternary structure of the ligand-binding domain. Here, by determining the structure of the kainate receptor GluK2 subtype in its desensitized state by cryo-electron microscopy (cryo-EM) at 3.8 Å resolution, we show that desensitization is characterized by the establishment of a ring-like structure in the ligand-binding domain layer of the receptor. Formation of this 'desensitization ring' is mediated by staggered helix contacts between adjacent subunits, which leads to a pseudo-four-fold symmetric arrangement of the ligand-binding domains, illustrating subtle changes in symmetry that are important for the gating mechanism. Disruption of the desensitization ring is probably the key switch that enables restoration of the receptor to its resting state, thereby completing the gating cycle.
PubMed: 27580033
DOI: 10.1038/nature19352
PDB entries with the same primary citation
Experimental method
ELECTRON MICROSCOPY (3.8 Å)
Structure validation

246704

PDB entries from 2025-12-24

PDB statisticsPDBj update infoContact PDBjnumon