Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

5ZUG

Structure of the bacterial acetate channel SatP

Summary for 5ZUG
Entry DOI10.2210/pdb5zug/pdb
DescriptorSuccinate-acetate/proton symporter SatP, nonyl beta-D-glucopyranoside (3 entities in total)
Functional Keywordsacetate, channel, transport protein
Biological sourceEscherichia coli K-12
Total number of polymer chains6
Total formula weight122659.02
Authors
Sun, P.C.,Li, J.L.,Xiao, Q.J.,Guan, Z.Y.,Deng, D. (deposition date: 2018-05-07, release date: 2018-11-21, Last modification date: 2024-05-29)
Primary citationSun, P.,Li, J.,Zhang, X.,Guan, Z.,Xiao, Q.,Zhao, C.,Song, M.,Zhou, Y.,Mou, L.,Ke, M.,Guo, L.,Geng, J.,Deng, D.
Crystal structure of the bacterial acetate transporter SatP reveals that it forms a hexameric channel.
J. Biol. Chem., 293:19492-19500, 2018
Cited by
PubMed Abstract: Acetate is found ubiquitously in the natural environment and can be used as an exogenous carbon source by bacteria, fungi, and mammalian cells. A representative member of the acetate uptake transporter (AceTr) family named SatP (also yaaH) has been preliminarily identified as a succinate-acetate/proton symporter in However, the molecular mechanism of acetate uptake by SatP still remains elusive. Here, we report the crystal structure of SatP from at 2.8 Å resolution, determined with a molecular replacement approach using a previously developed predicted model algorithm, which revealed a hexameric UreI-like channel structure. Structural analysis identified six transmembrane (TM) helices surrounding the central channel pore in each protomer and three conserved hydrophobic residues, FLY, located in the middle of the TM region for pore constriction. According to single-channel conductance recordings, performed with purified SatP reconstituted into lipid bilayer, three conserved polar residues in the TM1 facing to the periplasmic side are closely associated with acetate translocation activity. These analyses provide critical insights into the mechanism of acetate translocation in bacteria and a first glimpse of a structure of an AceTr family transporter.
PubMed: 30333234
DOI: 10.1074/jbc.RA118.003876
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.802 Å)
Structure validation

226707

PDB entries from 2024-10-30

PDB statisticsPDBj update infoContact PDBjnumon