Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

4WR7

Crystal structure of human carbonic anhydrase isozyme I with 2,3,5,6-Tetrafluoro-4-(propylthio)benzenesulfonamide.

Summary for 4WR7
Entry DOI10.2210/pdb4wr7/pdb
DescriptorCarbonic anhydrase 1, ZINC ION, 2,3,5,6-tetrafluoro-4-(propylsulfanyl)benzenesulfonamide, ... (7 entities in total)
Functional Keywordsdrug design, benzenesulfonamide, metal-binding, lyase-lyase inhibitor complex, lyase
Biological sourceHomo sapiens (Human)
Cellular locationCytoplasm: P00915
Total number of polymer chains2
Total formula weight58755.97
Authors
Manakova, E.,Smirnov, A.,Grazulis, S. (deposition date: 2014-10-23, release date: 2015-07-01, Last modification date: 2024-01-10)
Primary citationZubriene, A.,Smirnoviene, J.,Smirnov, A.,Morkunaite, V.,Michailoviene, V.,Jachno, J.,Juozapaitiene, V.,Norvaisas, P.,Manakova, E.,Grazulis, S.,Matulis, D.
Intrinsic thermodynamics of 4-substituted-2,3,5,6-tetrafluorobenzenesulfonamide binding to carbonic anhydrases by isothermal titration calorimetry.
Biophys.Chem., 205:51-65, 2015
Cited by
PubMed Abstract: Para substituted tetrafluorobenzenesulfonamides bind to carbonic anhydrases (CAs) extremely tightly and exhibit some of the strongest known protein-small ligand interactions, reaching an intrinsic affinity of 2 pM as determined by displacement isothermal titration calorimetry (ITC). The enthalpy and entropy of binding to five CA isoforms were measured by ITC in two buffers of different protonation enthalpies. The pKa values of compound sulfonamide groups were measured potentiometrically and spectrophotometrically, and enthalpies of protonation were measured by ITC in order to evaluate the proton linkage contributions to the observed binding thermodynamics. Intrinsic means the affinity of a sulfonamide anion for the Zn bound water form of CAs. Fluorination of the benzene ring significantly enhanced the observed affinities as it increased the fraction of deprotonated ligand while having little impact on intrinsic affinities. Intrinsic enthalpy contributions to the binding affinity were dominant over entropy and were more exothermic for CA I than for other CA isoforms. Thermodynamic measurements together with the X-ray crystallographic structures of protein-ligand complexes enabled analysis of structure-activity relationships in this enzyme ligand system.
PubMed: 26079542
DOI: 10.1016/j.bpc.2015.05.009
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.5 Å)
Structure validation

230444

PDB entries from 2025-01-22

PDB statisticsPDBj update infoContact PDBjnumon