4W60
The structure of Vaccina virus H7 protein displays A Novel Phosphoinositide binding fold required for membrane biogenesis
Summary for 4W60
| Entry DOI | 10.2210/pdb4w60/pdb |
| Related | 4W5X 4W60 |
| Descriptor | Late protein H7 (2 entities in total) |
| Functional Keywords | phophoinositide binding, pi3p pi4p, poxvirus, membrane biogenesis, viral protein |
| Biological source | Vaccinia virus (VACV) |
| Total number of polymer chains | 4 |
| Total formula weight | 68314.70 |
| Authors | Kolli, S.,Meng, X.,Wu, X.,Shengjuler, D.,Cameron, C.E.,Xiang, Y.,Deng, J. (deposition date: 2014-08-19, release date: 2014-12-31, Last modification date: 2024-11-06) |
| Primary citation | Kolli, S.,Meng, X.,Wu, X.,Shengjuler, D.,Cameron, C.E.,Xiang, Y.,Deng, J. Structure-function analysis of vaccinia virus h7 protein reveals a novel phosphoinositide binding fold essential for poxvirus replication. J.Virol., 89:2209-2219, 2015 Cited by PubMed Abstract: Phosphoinositides and phosphoinositide binding proteins play a critical role in membrane and protein trafficking in eukaryotes. Their critical role in replication of cytoplasmic viruses has just begun to be understood. Poxviruses, a family of large cytoplasmic DNA viruses, rely on the intracellular membranes to develop their envelope, and poxvirus morphogenesis requires enzymes from the cellular phosphoinositide metabolic pathway. However, the role of phosphoinositides in poxvirus replication remains unclear, and no poxvirus proteins show any homology to eukaryotic phosphoinositide binding domains. Recently, a group of poxvirus proteins, termed viral membrane assembly proteins (VMAPs), were identified as essential for poxvirus membrane biogenesis. A key component of VMAPs is the H7 protein. Here we report the crystal structure of the H7 protein from vaccinia virus. The H7 structure displays a novel fold comprised of seven α-helices and a highly curved three-stranded antiparallel β-sheet. We identified a phosphoinositide binding site in H7, comprised of basic residues on a surface patch and the flexible C-terminal tail. These residues were found to be essential for viral replication and for binding of H7 to phosphatidylinositol-3-phosphate (PI3P) and phosphatidylinositol-4-phosphate (PI4P). Our studies suggest that phosphoinositide binding by H7 plays an essential role in poxvirus membrane biogenesis. PubMed: 25473060DOI: 10.1128/JVI.03073-14 PDB entries with the same primary citation |
| Experimental method | X-RAY DIFFRACTION (2.7 Å) |
Structure validation
Download full validation report






