4R0S
Crystal structure of P. aeruginosa TpbA
Summary for 4R0S
| Entry DOI | 10.2210/pdb4r0s/pdb |
| Related | 4R0T |
| Descriptor | Protein tyrosine phosphatase TpbA, PHOSPHATE ION, GLYCEROL, ... (4 entities in total) |
| Functional Keywords | dusp fold, protein tyrosine phosphatase, hydrolase |
| Biological source | Pseudomonas aeruginosa PAO1 |
| Total number of polymer chains | 2 |
| Total formula weight | 48296.96 |
| Authors | Xu, K.,Li, S.,Wang, Y.,Bartlam, M. (deposition date: 2014-08-01, release date: 2015-05-06, Last modification date: 2024-03-20) |
| Primary citation | Xu, K.,Li, S.,Yang, W.,Li, K.,Bai, Y.,Xu, Y.,Jin, J.,Wang, Y.,Bartlam, M. Structural and Biochemical Analysis of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from the Opportunistic Pathogen Pseudomonas aeruginosa PAO1 PLoS ONE, 10:e0124330-e0124330, 2015 Cited by PubMed Abstract: Biofilms are important for cell communication and growth in most bacteria, and are responsible for a number of human clinical infections and diseases. TpbA (PA3885) is a dual specific tyrosine phosphatase (DUSP) that negatively regulates biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa PAO1 by converting extracellular quorum sensing signals into internal gene cascade reactions that result in reduced biofilm formation. We have determined the three-dimensional crystal structure of wild-type TpbA from P. aeruginosa PAO1 in the phosphate-bound state and a TpbA (C132S) mutant with phosphotyrosine. Comparison between the phosphate-bound structure and the previously reported ligand-free TpbA structure reveals the extent of conformational changes that occur upon substrate binding. The largest changes occur in the functional loops that define the substrate binding site, including the PTP, general acid and α4-α5 loops. We further show that TpbA efficiently catalyzes the hydrolysis of two phosphotyrosine peptides derived from the periplasmic domain of TpbB (YfiN, PA1120), with a strong preference for dephosphorylating Tyr48 over Tyr62. This work adds to the small repertoire of DUSP structures in both the ligand-free and ligand-bound states, and provides a starting point for further study of the role of TpbA in biofilm formation. PubMed: 25909591DOI: 10.1371/journal.pone.0124330 PDB entries with the same primary citation |
| Experimental method | X-RAY DIFFRACTION (2.03 Å) |
Structure validation
Download full validation report






