Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

4QBU

Structure of the Acyl Transferase domain of ZmaA

Summary for 4QBU
Entry DOI10.2210/pdb4qbu/pdb
DescriptorZmaA, FORMIC ACID (3 entities in total)
Functional Keywordsacyl transferase, polyketide synthase, acyl carrier protein, transferase
Biological sourceBacillus cereus
Total number of polymer chains1
Total formula weight50904.90
Authors
Dyer, D.H.,Kevany, B.M.,Thomas, M.G.,Forest, K.T. (deposition date: 2014-05-08, release date: 2014-11-05, Last modification date: 2023-09-20)
Primary citationPark, H.,Kevany, B.M.,Dyer, D.H.,Thomas, M.G.,Forest, K.T.
A Polyketide Synthase Acyltransferase Domain Structure Suggests a Recognition Mechanism for Its Hydroxymalonyl-Acyl Carrier Protein Substrate.
Plos One, 9:e110965-e110965, 2014
Cited by
PubMed Abstract: We have previously shown that the acyl transferase domain of ZmaA (ZmaA-AT) is involved in the biosynthesis of the aminopolyol polyketide/nonribosomal peptide hybrid molecule zwittermicin A from cereus UW85, and that it specifically recognizes the precursor hydroxymalonyl-acyl carrier protein (ACP) and transfers the hydroxymalonyl extender unit to a downstream second ACP via a transacylated AT domain intermediate. We now present the X-ray crystal structure of ZmaA-AT at a resolution of 1.7 Å. The structure shows a patch of solvent-exposed hydrophobic residues in the area where the AT is proposed to interact with the precursor ACP. We addressed the significance of the AT/ACP interaction in precursor specificity of the AT by testing whether malonyl- or methylmalonyl-ACP can be recognized by ZmaA-AT. We found that the ACP itself biases extender unit selection. Until now, structural information for ATs has been limited to ATs specific for the CoA-linked precursors malonyl-CoA and (2S)-methylmalonyl-CoA. This work contributes to polyketide synthase engineering efforts by expanding our knowledge of AT/substrate interactions with the structure of an AT domain that recognizes an ACP-linked substrate, the rare hydroxymalonate. Our structure suggests a model in which ACP interaction with a hydrophobic motif promotes secondary structure formation at the binding site, and opening of the adjacent substrate pocket lid to allow extender unit binding in the AT active site.
PubMed: 25340352
DOI: 10.1371/journal.pone.0110965
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.7 Å)
Structure validation

236060

PDB entries from 2025-05-14

PDB statisticsPDBj update infoContact PDBjnumon