4MCU
Crystal structure of disulfide oxidoreductase from Klebsiella pneumoniae in reduced state
Summary for 4MCU
Entry DOI | 10.2210/pdb4mcu/pdb |
Descriptor | Thiol:disulfide interchange protein (2 entities in total) |
Functional Keywords | oxidative folding, virulence factor maturation, thioredoxin fold, dsba, disulfide oxidase, dsbb, periplasmic, oxidoreductase |
Biological source | Klebsiella pneumoniae |
Cellular location | Periplasm : B5XZJ6 |
Total number of polymer chains | 6 |
Total formula weight | 126984.04 |
Authors | Kurth, F.,Premkumar, L.,Martin, J.L. (deposition date: 2013-08-21, release date: 2013-11-27, Last modification date: 2023-09-20) |
Primary citation | Kurth, F.,Rimmer, K.,Premkumar, L.,Mohanty, B.,Duprez, W.,Halili, M.A.,Shouldice, S.R.,Heras, B.,Fairlie, D.P.,Scanlon, M.J.,Martin, J.L. Comparative Sequence, Structure and Redox Analyses of Klebsiella pneumoniae DsbA Show That Anti-Virulence Target DsbA Enzymes Fall into Distinct Classes. Plos One, 8:e80210-e80210, 2013 Cited by PubMed Abstract: Bacterial DsbA enzymes catalyze oxidative folding of virulence factors, and have been identified as targets for antivirulence drugs. However, DsbA enzymes characterized to date exhibit a wide spectrum of redox properties and divergent structural features compared to the prototypical DsbA enzyme of Escherichia coli DsbA (EcDsbA). Nonetheless, sequence analysis shows that DsbAs are more highly conserved than their known substrate virulence factors, highlighting the potential to inhibit virulence across a range of organisms by targeting DsbA. For example, Salmonella enterica typhimurium (SeDsbA, 86 % sequence identity to EcDsbA) shares almost identical structural, surface and redox properties. Using comparative sequence and structure analysis we predicted that five other bacterial DsbAs would share these properties. To confirm this, we characterized Klebsiella pneumoniae DsbA (KpDsbA, 81 % identity to EcDsbA). As expected, the redox properties, structure and surface features (from crystal and NMR data) of KpDsbA were almost identical to those of EcDsbA and SeDsbA. Moreover, KpDsbA and EcDsbA bind peptides derived from their respective DsbBs with almost equal affinity, supporting the notion that compounds designed to inhibit EcDsbA will also inhibit KpDsbA. Taken together, our data show that DsbAs fall into different classes; that DsbAs within a class may be predicted by sequence analysis of binding loops; that DsbAs within a class are able to complement one another in vivo and that compounds designed to inhibit EcDsbA are likely to inhibit DsbAs within the same class. PubMed: 24244651DOI: 10.1371/journal.pone.0080210 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.99 Å) |
Structure validation
Download full validation report