Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

4L2W

Crystal structure of the Shroom-Binding domain of human Rock1

Summary for 4L2W
Entry DOI10.2210/pdb4l2w/pdb
DescriptorRho-associated protein kinase 1 (2 entities in total)
Functional Keywordscoiled-coil, shroom sd2, kinase, myosin, protein binding
Biological sourceHomo sapiens (human)
Cellular locationCytoplasm: Q13464
Total number of polymer chains4
Total formula weight40304.37
Authors
Mohan, S.,VanDemark, A.P. (deposition date: 2013-06-04, release date: 2014-04-16, Last modification date: 2024-02-28)
Primary citationMohan, S.,Das, D.,Bauer, R.J.,Heroux, A.,Zalewski, J.K.,Heber, S.,Dosunmu-Ogunbi, A.M.,Trakselis, M.A.,Hildebrand, J.D.,Vandemark, A.P.
Structure of a highly conserved domain of Rock1 required for Shroom-mediated regulation of cell morphology.
Plos One, 8:e81075-e81075, 2013
Cited by
PubMed Abstract: Rho-associated coiled coil containing protein kinase (Rho-kinase or Rock) is a well-defined determinant of actin organization and dynamics in most animal cells characterized to date. One of the primary effectors of Rock is non-muscle myosin II. Activation of Rock results in increased contractility of myosin II and subsequent changes in actin architecture and cell morphology. The regulation of Rock is thought to occur via autoinhibition of the kinase domain via intramolecular interactions between the N-terminus and the C-terminus of the kinase. This autoinhibited state can be relieved via proteolytic cleavage, binding of lipids to a Pleckstrin Homology domain near the C-terminus, or binding of GTP-bound RhoA to the central coiled-coil region of Rock. Recent work has identified the Shroom family of proteins as an additional regulator of Rock either at the level of cellular distribution or catalytic activity or both. The Shroom-Rock complex is conserved in most animals and is essential for the formation of the neural tube, eye, and gut in vertebrates. To address the mechanism by which Shroom and Rock interact, we have solved the structure of the coiled-coil region of Rock that binds to Shroom proteins. Consistent with other observations, the Shroom binding domain is a parallel coiled-coil dimer. Using biochemical approaches, we have identified a large patch of residues that contribute to Shrm binding. Their orientation suggests that there may be two independent Shrm binding sites on opposing faces of the coiled-coil region of Rock. Finally, we show that the binding surface is essential for Rock colocalization with Shroom and for Shroom-mediated changes in cell morphology.
PubMed: 24349032
DOI: 10.1371/journal.pone.0081075
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.49 Å)
Structure validation

226707

건을2024-10-30부터공개중

PDB statisticsPDBj update infoContact PDBjnumon