Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

4XO8

Crystal structure of the FimH lectin domain from E.coli K12 in complex with heptyl alpha-D-mannopyrannoside

Summary for 4XO8
Entry DOI10.2210/pdb4xo8/pdb
DescriptorProtein FimH, heptyl alpha-D-mannopyranoside (3 entities in total)
Functional Keywordstype i pilus, cell adhesion, lectin, upec, bacterial adhesin, mannose, uti, catch bond
Biological sourceEscherichia coli K-12
Cellular locationFimbrium: P08191
Total number of polymer chains2
Total formula weight34390.34
Authors
Jakob, R.P.,Eras, J.,Navarra, G.,Ernst, B.,Glockshuber, R.,Maier, T. (deposition date: 2015-01-16, release date: 2016-01-27, Last modification date: 2024-11-13)
Primary citationSauer, M.M.,Jakob, R.P.,Eras, J.,Baday, S.,Eris, D.,Navarra, G.,Berneche, S.,Ernst, B.,Maier, T.,Glockshuber, R.
Catch-bond mechanism of the bacterial adhesin FimH.
Nat Commun, 7:10738-10738, 2016
Cited by
PubMed Abstract: Ligand-receptor interactions that are reinforced by mechanical stress, so-called catch-bonds, play a major role in cell-cell adhesion. They critically contribute to widespread urinary tract infections by pathogenic Escherichia coli strains. These pathogens attach to host epithelia via the adhesin FimH, a two-domain protein at the tip of type I pili recognizing terminal mannoses on epithelial glycoproteins. Here we establish peptide-complemented FimH as a model system for fimbrial FimH function. We reveal a three-state mechanism of FimH catch-bond formation based on crystal structures of all states, kinetic analysis of ligand interaction and molecular dynamics simulations. In the absence of tensile force, the FimH pilin domain allosterically accelerates spontaneous ligand dissociation from the FimH lectin domain by 100,000-fold, resulting in weak affinity. Separation of the FimH domains under stress abolishes allosteric interplay and increases the affinity of the lectin domain. Cell tracking demonstrates that rapid ligand dissociation from FimH supports motility of piliated E. coli on mannosylated surfaces in the absence of shear force.
PubMed: 26948702
DOI: 10.1038/ncomms10738
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.698 Å)
Structure validation

227561

PDB entries from 2024-11-20

PDB statisticsPDBj update infoContact PDBjnumon