4P6F
Crystal structure of the peptolide 12C bound to bacterial ribosome
This is a non-PDB format compatible entry.
Summary for 4P6F
Entry DOI | 10.2210/pdb4p6f/pdb |
Descriptor | 16S ribosomal RNA, 30S ribosomal protein S10, 30S ribosomal protein S11, ... (59 entities in total) |
Functional Keywords | protein biosynthesis, ribosome, rna, trna, peptide exit tunnel, macrolide, ribosome-ribosome inhibitor complex, ribosome/ribosome inhibitor |
Biological source | Thermus thermophilus More |
Total number of polymer chains | 114 |
Total formula weight | 4523029.85 |
Authors | Fagan, C.E.,Dunham, C.M. (deposition date: 2014-03-24, release date: 2014-10-01, Last modification date: 2024-10-30) |
Primary citation | Washington, A.Z.,Benicewicz, D.B.,Canzoneri, J.C.,Fagan, C.E.,Mwakwari, S.C.,Maehigashi, T.,Dunham, C.M.,Oyelere, A.K. Macrolide-Peptide Conjugates as Probes of the Path of Travel of the Nascent Peptides through the Ribosome. Acs Chem.Biol., 9:2621-2631, 2014 Cited by PubMed Abstract: Despite decades of research on the bacterial ribosome, the ribosomal exit tunnel is still poorly understood. Although it has been suggested that the exit tunnel is simply a convenient route of egress for the nascent chain, specific protein sequences serve to slow the rate of translation, suggesting some degree of interaction between the nascent peptide chain and the exit tunnel. To understand how the ribosome interacts with nascent peptide sequences, we synthesized and characterized a novel class of probe molecules. These peptide-macrolide (or "peptolide") conjugates were designed to present unique peptide sequences to the exit tunnel. Biochemical and X-ray structural analyses of the interactions between these probes and the ribosome reveal interesting insights about the exit tunnel. Using translation inhibition and RNA structure probing assays, we find the exit tunnel has a relaxed preference for the directionality (N → C or C → N orientation) of the nascent peptides. Moreover, the X-ray crystal structure of one peptolide derived from a positively charged, reverse Nuclear Localization Sequence peptide, bound to the 70S bacterial ribosome, reveals that the macrolide ring of the peptolide binds in the same position as other macrolides. However, the peptide tail folds over the macrolide ring, oriented toward the peptidyl transferase center and interacting in a novel manner with 23S rRNA residue C2442 and His69 of ribosomal protein L4. These data suggest that these peptolides are viable probes for interrogating nascent peptide-exit tunnel interaction. PubMed: 25198768DOI: 10.1021/cb5003224 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (3.6 Å) |
Structure validation
Download full validation report