Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

3UPL

Crystal structure of the Brucella abortus enzyme catalyzing the first committed step of the methylerythritol 4-phosphate pathway.

Summary for 3UPL
Entry DOI10.2210/pdb3upl/pdb
Related3UPY
DescriptorOxidoreductase, MAGNESIUM ION, GLYCEROL, ... (4 entities in total)
Functional Keywordsrossmann fold, oxidoreductase, nadph binding
Biological sourceBrucella melitensis biovar Abortus 2308
Total number of polymer chains2
Total formula weight95910.27
Authors
Calisto, B.M.,Perez-Gil, J.,Fita, I.,Rodriguez-Concepcion, M. (deposition date: 2011-11-18, release date: 2012-03-28, Last modification date: 2024-03-13)
Primary citationPerez-Gil, J.,Calisto, B.M.,Behrendt, C.,Kurz, T.,Fita, I.,Rodriguez-Concepcion, M.
Crystal structure of Brucella abortus deoxyxylulose-5-phosphate reductoisomerase-like (DRL) enzyme involved in isoprenoid biosynthesis.
J.Biol.Chem., 287:15803-15809, 2012
Cited by
PubMed Abstract: Most bacteria use the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for the synthesis of their essential isoprenoid precursors. The absence of the MEP pathway in humans makes it a promising new target for the development of much needed new and safe antimicrobial drugs. However, bacteria show a remarkable metabolic plasticity for isoprenoid production. For example, the NADPH-dependent production of MEP from 1-deoxy-D-xylulose 5-phosphate in the first committed step of the MEP pathway is catalyzed by 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) in most bacteria, whereas an unrelated DXR-like (DRL) protein was recently found to catalyze the same reaction in some organisms, including the emerging human and animal pathogens Bartonella and Brucella. Here, we report the x-ray crystal structures of the Brucella abortus DRL enzyme in its apo form and in complex with the broad-spectrum antibiotic fosmidomycin solved to 1.5 and 1.8 Å resolution, respectively. DRL is a dimer, with each polypeptide folding into three distinct domains starting with the NADPH-binding domain, in resemblance to the structure of bacterial DXR enzymes. Other than that, DRL and DXR show a low structural relationship, with a different disposition of the domains and a topologically unrelated C-terminal domain. In particular, the active site of DRL presents a unique arrangement, suggesting that the design of drugs that would selectively inhibit DRL-harboring pathogens without affecting beneficial or innocuous bacteria harboring DXR should be feasible. As a proof of concept, we identified two strong DXR inhibitors that have virtually no effect on DRL activity.
PubMed: 22442144
DOI: 10.1074/jbc.M112.354811
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.5 Å)
Structure validation

246704

PDB entries from 2025-12-24

PDB statisticsPDBj update infoContact PDBjnumon