Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

3NVJ

Crystal structure of the C143A/C166A mutant of Ero1p

Summary for 3NVJ
Entry DOI10.2210/pdb3nvj/pdb
Related1RP4 1RQ1
DescriptorEndoplasmic oxidoreductin-1, 1-ETHYL-PYRROLIDINE-2,5-DIONE, FLAVIN-ADENINE DINUCLEOTIDE, ... (5 entities in total)
Functional Keywordsflavoenzyme, oxidoreductase, fad, disulfide bonds, er
Biological sourceSaccharomyces cerevisiae (yeast)
Cellular locationEndoplasmic reticulum membrane; Peripheral membrane protein; Lumenal side: Q03103
Total number of polymer chains1
Total formula weight46320.00
Authors
Fass, D.,Vonshak, O. (deposition date: 2010-07-08, release date: 2010-11-03, Last modification date: 2024-11-20)
Primary citationHeldman, N.,Vonshak, O.,Sevier, C.S.,Vitu, E.,Mehlman, T.,Fass, D.
Steps in reductive activation of the disulfide-generating enzyme Ero1p
Protein Sci., 19:1863-1876, 2010
Cited by
PubMed Abstract: Ero1p is the primary catalyst of disulfide bond formation in the yeast endoplasmic reticulum (ER). Ero1p contains a pair of essential disulfide bonds that participate directly in the electron transfer pathway from substrate thiol groups to oxygen. Remarkably, elimination of certain other Ero1p disulfides by mutation enhances enzyme activity. In particular, the C150A/C295A Ero1p mutant exhibits increased thiol oxidation in vitro and in vivo and interferes with redox homeostasis in yeast cells by hyperoxidizing the ER. Inhibitory disulfides of Ero1p are thus important for enzyme regulation. To visualize the differences between de-regulated and wild-type Ero1p, we determined the crystal structure of Ero1p C150A/C295A. The structure revealed local changes compared to the wild-type enzyme around the sites of mutation, but no conformational transitions within 25 A of the active site were observed. To determine how the C150--C295 disulfide nonetheless participates in redox regulation of Ero1p, we analyzed using mass spectrometry the changes in Ero1p disulfide connectivity as a function of time after encounter with reducing substrates. We found that the C150--C295 disulfide sets a physiologically appropriate threshold for enzyme activation by guarding a key neighboring disulfide from reduction. This study illustrates the diverse and interconnected roles that disulfides can play in redox regulation of protein activity.
PubMed: 20669236
DOI: 10.1002/pro.473
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (3.2 Å)
Structure validation

231029

PDB entries from 2025-02-05

PDB statisticsPDBj update infoContact PDBjnumon