Loading
PDBj
メニューPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

3GDT

Crystal structure of the D91N mutant of the orotidine 5'-monophosphate decarboxylase from Saccharomyces cerevisiae complexed with 6-azauridine 5'-monophosphate

3GDT の概要
エントリーDOI10.2210/pdb3gdt/pdb
関連するPDBエントリー1DQW 3GDK 3GDL 3GDM 3GDR
分子名称Orotidine 5'-phosphate decarboxylase, 6-AZA URIDINE 5'-MONOPHOSPHATE (3 entities in total)
機能のキーワードorotidine 5'-monophosphate decarboxylase, d91n mutant, 6-azauridine 5'-monophosphate, decarboxylase, lyase, phosphoprotein, pyrimidine biosynthesis, ubl conjugation
由来する生物種Saccharomyces cerevisiae (yeast)
タンパク質・核酸の鎖数4
化学式量合計118414.86
構造登録者
Fedorov, A.A.,Fedorov, E.V.,Wood, B.M.,Gerlt, J.A.,Almo, S.C. (登録日: 2009-02-24, 公開日: 2009-06-23, 最終更新日: 2023-09-06)
主引用文献Chan, K.K.,Wood, B.M.,Fedorov, A.A.,Fedorov, E.V.,Imker, H.J.,Amyes, T.L.,Richard, J.P.,Almo, S.C.,Gerlt, J.A.
Mechanism of the orotidine 5'-monophosphate decarboxylase-catalyzed reaction: evidence for substrate destabilization.
Biochemistry, 48:5518-5531, 2009
Cited by
PubMed Abstract: The reaction catalyzed by orotidine 5'-monophosphate decarboxylase (OMPDC) involves a stabilized anionic intermediate, although the structural basis for the rate acceleration (k(cat)/k(non), 7.1 x 10(16)) and proficiency [(k(cat)/K(M))/k(non), 4.8 x 10(22) M(-1)] is uncertain. That the OMPDCs from Methanothermobacter thermautotrophicus (MtOMPDC) and Saccharomyces cerevisiae (ScOMPDC) catalyze the exchange of H6 of the UMP product with solvent deuterium allows an estimate of a lower limit on the rate acceleration associated with stabilization of the intermediate and its flanking transition states (>or=10(10)). The origin of the "missing" contribution, or=10(10)), is of interest. Based on structures of liganded complexes, unfavorable electrostatic interactions between the substrate carboxylate group and a proximal Asp (Asp 70 in MtOMPDC and Asp 91 in ScOMPDC) have been proposed to contribute to the catalytic efficiency [Wu, N., Mo, Y., Gao, J., and Pai, E. F. (2000) Proc. Natl. Acad. Sci. U.S.A. 97, 2017-2022]. We investigated that hypothesis by structural and functional characterization of the D70N and D70G mutants of MtOMPDC and the D91N mutant of ScOMPDC. The substitutions for Asp 70 in MtOMPDC significantly decrease the value of k(cat) for decarboxylation of FOMP (a more reactive substrate analogue) but have little effect on the value of k(ex) for exchange of H6 of FUMP with solvent deuterium; the structures of wild-type MtOMPDC and its mutants are superimposable when complexed with 6-azaUMP. In contrast, the D91N mutant of ScOMPDC does not catalyze exchange of H6 of FUMP; the structures of wild-type ScOMPDC and its D91N mutant are not superimposable when complexed with 6-azaUMP, with differences in both the conformation of the active site loop and the orientation of the ligand vis a vis the active site residues. We propose that the differential effects of substitutions for Asp 70 of MtOMPDC on decarboxylation and exchange provide additional evidence for a carbanionic intermediate as well as the involvement of Asp 70 in substrate destabilization.
PubMed: 19435314
DOI: 10.1021/bi900623r
主引用文献が同じPDBエントリー
実験手法
X-RAY DIFFRACTION (1.6 Å)
構造検証レポート
Validation report summary of 3gdt
検証レポート(詳細版)ダウンロードをダウンロード

226707

件を2024-10-30に公開中

PDB statisticsPDBj update infoContact PDBjnumon