Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

3F8Y

Correlations of Human Dihydrofolate Reductase with Structural Data for Human Active Site Mutant Enzyme Complexes

Summary for 3F8Y
Entry DOI10.2210/pdb3f8y/pdb
Related1U72 3F8Z 3F91
DescriptorDihydrofolate reductase, 2,4-DIAMINO-5-[2-METHOXY-5-(4-CARBOXYBUTYLOXY)BENZYL]PYRIMIDINE, NADPH DIHYDRO-NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE, ... (5 entities in total)
Functional Keywordsactive site mutants ligand complex dhfr, nadp, one-carbon metabolism, oxidoreductase
Biological sourceHomo sapiens (human)
Cellular locationMitochondrion : P00374
Total number of polymer chains1
Total formula weight22765.70
Authors
Cody, V.,Pace, J.,Makin, J.,Piraino, J.,Queener, S.F.,Rosowsky, A. (deposition date: 2008-11-13, release date: 2009-08-18, Last modification date: 2023-09-06)
Primary citationCody, V.,Pace, J.,Makin, J.,Piraino, J.,Queener, S.F.,Rosowsky, A.
Correlations of Inhibitor Kinetics for Pneumocystis jirovecii and Human Dihydrofolate Reductase with Structural Data for Human Active Site Mutant Enzyme Complexes.
Biochemistry, 48:1702-1711, 2009
Cited by
PubMed Abstract: To understand the role of specific active site residues in conferring selective dihydrofolate reductase (DHFR) inhibition from pathogenic organisms such as Pneumocystis carinii (pc) or Pneumocystis jirovecii (pj), the causative agent in AIDS pneumonia, it is necessary to evaluate the role of these residues in the human enzyme. We report the first kinetic parameters for DHFR from pjDHFR and pcDHFR with methotrexate (MTX), trimethoprim (TMP), and its potent analogue, PY957. We also report the mutagenesis and kinetic analysis of active site mutant proteins at positions 35 and 64 of human (h) DHFR and the crystal structure determinations of hDHFR ternary complexes of NADPH and PY957 with the wild-type DHFR enzyme, the single mutant protein, Gln35Lys, and two double mutant proteins, Gln35Ser/Asn64Ser and Gln35Ser/Asn64Phe. These substitutions place into human DHFR amino acids found at those sites in the opportunistic pathogens pcDHFR (Q35K/N64F) and pjDHFR (Q35S/N64S). The K(i) inhibition constant for PY957 showed greatest potency of the compound for the N64F single mutant protein (5.2 nM), followed by wild-type pcDHFR (K(i) 22 nM) and then wild-type hDHFR enzyme (K(i) 230 nM). Structural data reveal significant conformational changes in the binding interactions of PY957 in the hDHFR Q35S/N64F mutant protein complex compared to the other hDHFR mutant protein complexes and the pcDHFR ternary complex. The conformation of PY957 in the wild-type DHFR is similar to that observed for the single mutant protein. These data support the hypothesis that the enhanced selectivity of PY957 for pcDHFR is in part due to the contributions at positions 37 and 69 (pcDHFR numbering). This insight will help in the design of more selective inhibitors that target these opportunistic pathogens.
PubMed: 19196009
DOI: 10.1021/bi801960h
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.45 Å)
Structure validation

226707

数据于2024-10-30公开中

PDB statisticsPDBj update infoContact PDBjnumon