Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

3CPM

plant peptide deformylase PDF1B crystal structure

Summary for 3CPM
Entry DOI10.2210/pdb3cpm/pdb
DescriptorPeptide deformylase, chloroplast, SULFATE ION, ZINC ION, ... (4 entities in total)
Functional Keywordsalpha beta, chloroplast, hydrolase, iron, metal-binding, protein biosynthesis, transit peptide
Biological sourceArabidopsis thaliana (Mouse-ear cress)
Cellular locationPlastid, chloroplast stroma: Q9FUZ2
Total number of polymer chains1
Total formula weight22275.71
Authors
Rodgers, D.W.,Houtz, R.L.,Dirk, L.M.A.,Schmidt, J.J.,Cai, Y. (deposition date: 2008-03-31, release date: 2008-07-22, Last modification date: 2024-02-21)
Primary citationDirk, L.M.,Schmidt, J.J.,Cai, Y.,Barnes, J.C.,Hanger, K.M.,Nayak, N.R.,Williams, M.A.,Grossman, R.B.,Houtz, R.L.,Rodgers, D.W.
Insights into the substrate specificity of plant peptide deformylase, an essential enzyme with potential for the development of novel biotechnology applications in agriculture
Biochem.J., 413:417-427, 2008
Cited by
PubMed Abstract: The crystal structure of AtPDF1B [Arabidopsis thaliana PDF (peptide deformylase) 1B; EC 3.5.1.88], a plant specific deformylase, has been determined at a resolution of 2.4 A (1 A=0.1 nm). The overall fold of AtPDF1B is similar to other peptide deformylases that have been reported. Evidence from the crystal structure and gel filtration chromatography indicates that AtPDF1B exists as a symmetric dimer. PDF1B is essential in plants and has a preferred substrate specificity towards the PS II (photosystem II) D1 polypeptide. Comparative analysis of AtPDF1B, AtPDF1A, and the type 1B deformylase from Escherichia coli, identifies a number of differences in substrate binding subsites that might account for variations in sequence preference. A model of the N-terminal five amino acids from the D1 polypeptide bound in the active site of AtPDF1B suggests an influence of Tyr(178) as a structural determinant for polypeptide substrate specificity through hydrogen bonding with Thr(2) in the D1 sequence. Kinetic analyses using a polypeptide mimic of the D1 N-terminus was performed on AtPDF1B mutated at Tyr(178) to alanine, phenylalanine or arginine (equivalent residue in AtPDF1A). The results suggest that, whereas Tyr(178) can influence catalytic activity, other residues contribute to the overall preference for the D1 polypeptide.
PubMed: 18412546
DOI: 10.1042/BJ20071641
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.4 Å)
Structure validation

237735

PDB entries from 2025-06-18

PDB statisticsPDBj update infoContact PDBjnumon