3ASF
MamA MSR-1 C2
Summary for 3ASF
Entry DOI | 10.2210/pdb3asf/pdb |
Related | 3AS4 3AS5 3AS8 3ASD 3ASG 3ASH |
Descriptor | Magnetosome protein MamA, SULFATE ION (3 entities in total) |
Functional Keywords | tetratricopeptide repeats (tpr) containing protein, tpr protein, protein-protein interactions, mama, cytosol, protein binding |
Biological source | Magnetospirillum gryphiswaldense |
Total number of polymer chains | 2 |
Total formula weight | 42563.71 |
Authors | Zeytuni, N.,Davidov, G.,Zarivach, R. (deposition date: 2010-12-11, release date: 2011-07-20, Last modification date: 2023-11-01) |
Primary citation | Zeytuni, N.,Ozyamak, E.,Ben-Harush, K.,Davidov, G.,Levin, M.,Gat, Y.,Moyal, T.,Brik, A.,Komeili, A.,Zarivach, R. Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly Proc.Natl.Acad.Sci.USA, 108:E480-E487, 2011 Cited by PubMed Abstract: The magnetosome, a biomineralizing organelle within magnetotactic bacteria, allows their navigation along geomagnetic fields. Magnetosomes are membrane-bound compartments containing magnetic nanoparticles and organized into a chain within the cell, the assembly and biomineralization of magnetosomes are controlled by magnetosome-associated proteins. Here, we describe the crystal structures of the magnetosome-associated protein, MamA, from Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. MamA folds as a sequential tetra-trico-peptide repeat (TPR) protein with a unique hook-like shape. Analysis of the MamA structures indicates two distinct domains that can undergo conformational changes. Furthermore, structural analysis of seven crystal forms verified that the core of MamA is not affected by crystallization conditions and identified three protein-protein interaction sites, namely a concave site, a convex site, and a putative TPR repeat. Additionally, relying on transmission electron microscopy and size exclusion chromatography, we show that highly stable complexes form upon MamA homooligomerization. Disruption of the MamA putative TPR motif or N-terminal domain led to protein mislocalization in vivo and prevented MamA oligomerization in vitro. We, therefore, propose that MamA self-assembles through its putative TPR motif and its concave site to create a large homooligomeric scaffold which can interact with other magnetosome-associated proteins via the MamA convex site. We discuss the structural basis for TPR homooligomerization that allows the proper function of a prokaryotic organelle. PubMed: 21784982DOI: 10.1073/pnas.1103367108 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.39 Å) |
Structure validation
Download full validation report![Download](/newweb/media/icons/dl.png)
![Download](/newweb/media/icons/dl.png)