Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

3ZQB

PrgI-SipD from Salmonella typhimurium

Summary for 3ZQB
Entry DOI10.2210/pdb3zqb/pdb
Related2X9C 2YM0 2YM9 3ZQE
DescriptorPROTEIN PRGI, CELL INVASION PROTEIN SIPD, GLYCEROL (3 entities in total)
Functional Keywordscell invasion, type iii secretion, t3ss, tip complex, host pathogen interaction, bacterial pathogenesis
Biological sourceSALMONELLA ENTERICA SUBSP. ENTERICA SEROVAR TYPHIMURIUM
Cellular locationSecreted: Q56026
Total number of polymer chains2
Total formula weight66594.03
Authors
Lunelli, M.,Kolbe, M. (deposition date: 2011-06-08, release date: 2011-08-17, Last modification date: 2023-12-20)
Primary citationLunelli, M.,Hurwitz, R.,Lambers, J.,Kolbe, M.
Crystal Structure of Prgi-Sipd: Insight Into a Secretion Competent State of the Type Three Secretion System Needle Tip and its Interaction with Host Ligands
Plos Pathog., 7:02163-, 2011
Cited by
PubMed Abstract: Many infectious gram-negative bacteria, including Salmonella typhimurium, require a Type Three Secretion System (T3SS) to translocate virulence factors into host cells. The T3SS consists of a membrane protein complex and an extracellular needle together that form a continuous channel. Regulated secretion of virulence factors requires the presence of SipD at the T3SS needle tip in S. typhimurium. Here we report three-dimensional structures of individual SipD, SipD in fusion with the needle subunit PrgI, and of SipD:PrgI in complex with the bile salt, deoxycholate. Assembly of the complex involves major conformational changes in both SipD and PrgI. This rearrangement is mediated via a π bulge in the central SipD helix and is stabilized by conserved amino acids that may allow for specificity in the assembly and composition of the tip proteins. Five copies each of the needle subunit PrgI and SipD form the T3SS needle tip complex. Using surface plasmon resonance spectroscopy and crystal structure analysis we found that the T3SS needle tip complex binds deoxycholate with micromolar affinity via a cleft formed at the SipD:PrgI interface. In the structure-based three-dimensional model of the T3SS needle tip, the bound deoxycholate faces the host membrane. Recently, binding of SipD with bile salts present in the gut was shown to impede bacterial infection. Binding of bile salts to the SipD:PrgI interface in this particular arrangement may thus inhibit the T3SS function. The structures presented in this study provide insight into the open state of the T3SS needle tip. Our findings present the atomic details of the T3SS arrangement occurring at the pathogen-host interface.
PubMed: 21829362
DOI: 10.1371/JOURNAL.PPAT.1002163
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.4 Å)
Structure validation

229183

PDB entries from 2024-12-18

PDB statisticsPDBj update infoContact PDBjnumon