Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

3SG7

Crystal Structure of GCaMP3-KF(linker 1)

Summary for 3SG7
Entry DOI10.2210/pdb3sg7/pdb
Related3SG2 3SG3 3SG4 3SG5 3SG6
DescriptorMyosin light chain kinase, Green fluorescent protein, Calmodulin-1 chimera, CALCIUM ION (3 entities in total)
Functional Keywordscalcium sensor, fluorescent protein
Biological sourceGallus gallus (Chicken)
More
Cellular locationCytoplasm, cytoskeleton, spindle: P0DP29
Total number of polymer chains1
Total formula weight50738.78
Authors
Schreiter, E.R.,Akerboom, J.,Looger, L.L. (deposition date: 2011-06-14, release date: 2012-06-20, Last modification date: 2024-11-06)
Primary citationAkerboom, J.,Chen, T.W.,Wardill, T.J.,Tian, L.,Marvin, J.S.,Mutlu, S.,Calderon, N.C.,Esposti, F.,Borghuis, B.G.,Sun, X.R.,Gordus, A.,Orger, M.B.,Portugues, R.,Engert, F.,Macklin, J.J.,Filosa, A.,Aggarwal, A.,Kerr, R.A.,Takagi, R.,Kracun, S.,Shigetomi, E.,Khakh, B.S.,Baier, H.,Lagnado, L.,Wang, S.S.,Bargmann, C.I.,Kimmel, B.E.,Jayaraman, V.,Svoboda, K.,Kim, D.S.,Schreiter, E.R.,Looger, L.L.
Optimization of a GCaMP calcium indicator for neural activity imaging.
J.Neurosci., 32:13819-13840, 2012
Cited by
PubMed Abstract: Genetically encoded calcium indicators (GECIs) are powerful tools for systems neuroscience. Recent efforts in protein engineering have significantly increased the performance of GECIs. The state-of-the art single-wavelength GECI, GCaMP3, has been deployed in a number of model organisms and can reliably detect three or more action potentials in short bursts in several systems in vivo. Through protein structure determination, targeted mutagenesis, high-throughput screening, and a battery of in vitro assays, we have increased the dynamic range of GCaMP3 by severalfold, creating a family of "GCaMP5" sensors. We tested GCaMP5s in several systems: cultured neurons and astrocytes, mouse retina, and in vivo in Caenorhabditis chemosensory neurons, Drosophila larval neuromuscular junction and adult antennal lobe, zebrafish retina and tectum, and mouse visual cortex. Signal-to-noise ratio was improved by at least 2- to 3-fold. In the visual cortex, two GCaMP5 variants detected twice as many visual stimulus-responsive cells as GCaMP3. By combining in vivo imaging with electrophysiology we show that GCaMP5 fluorescence provides a more reliable measure of neuronal activity than its predecessor GCaMP3. GCaMP5 allows more sensitive detection of neural activity in vivo and may find widespread applications for cellular imaging in general.
PubMed: 23035093
DOI: 10.1523/JNEUROSCI.2601-12.2012
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.9 Å)
Structure validation

227344

PDB entries from 2024-11-13

PDB statisticsPDBj update infoContact PDBjnumon