Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

3K4L

Pyranose 2-oxidase F454N mutant in complex with 2FG

Summary for 3K4L
Entry DOI10.2210/pdb3k4l/pdb
Related1TT0 2IGK 2IGM 2IGN 2IGO 3BG6
DescriptorPyranose 2-oxidase, FLAVIN-ADENINE DINUCLEOTIDE, 2-deoxy-2-fluoro-beta-D-glucopyranose, ... (5 entities in total)
Functional Keywordsoxidoreductase, gmc oxidoreductase, f454n mutant, rossmann fold, phbh fold, homotetramer, 8-alpha-(n3) histidyl flavinylation
Biological sourceTrametes ochracea (White-rot fungus)
Total number of polymer chains2
Total formula weight141282.54
Authors
Divne, C.,Tan, T.C. (deposition date: 2009-10-05, release date: 2010-05-12, Last modification date: 2024-11-20)
Primary citationSpadiut, O.,Tan, T.C.,Pisanelli, I.,Haltrich, D.,Divne, C.
Importance of the gating segment in the substrate-recognition loop of pyranose 2-oxidase.
Febs J., 277:2892-2909, 2010
Cited by
PubMed Abstract: Pyranose 2-oxidase from Trametes multicolor is a 270 kDa homotetrameric enzyme that participates in lignocellulose degradation by wood-rotting fungi and oxidizes a variety of aldopyranoses present in lignocellulose to 2-ketoaldoses. The active site in pyranose 2-oxidase is gated by a highly conserved, conformationally degenerate loop (residues 450-461), with a conformer ensemble that can accommodate efficient binding of both electron-donor substrate (sugar) and electron-acceptor substrate (oxygen or quinone compounds) relevant to the sequential reductive and oxidative half-reactions, respectively. To investigate the importance of individual residues in this loop, a systematic mutagenesis approach was used, including alanine-scanning, site-saturation and deletion mutagenesis, and selected variants were characterized by biochemical and crystal-structure analyses. We show that the gating segment ((454)FSY(456)) of this loop is particularly important for substrate specificity, discrimination of sugar substrates, turnover half-life and resistance to thermal unfolding, and that three conserved residues (Asp(452), Phe(454) and Tyr(456)) are essentially intolerant to substitution. We furthermore propose that the gating segment is of specific importance for the oxidative half-reaction of pyranose 2-oxidase when oxygen is the electron acceptor. Although the position and orientation of the slow substrate 2-deoxy-2-fluoro-glucose when bound in the active site of pyranose 2-oxidase variants is identical to that observed earlier, the substrate-recognition loop in F454N and Y456W displays a high degree of conformational disorder. The present study also lends support to the hypothesis that 1,4-benzoquinone is a physiologically relevant alternative electron acceptor in the oxidative half-reaction.
PubMed: 20528921
DOI: 10.1111/j.1742-4658.2010.07705.x
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.75 Å)
Structure validation

227561

PDB entries from 2024-11-20

PDB statisticsPDBj update infoContact PDBjnumon