Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2XBP

A novel signal transduction protein PII variant from Synechococcus elongatus PCC7942 indicates a two-step process for NAGK PII complex formation

Summary for 2XBP
Entry DOI10.2210/pdb2xbp/pdb
Related1QY7 2JJ4 2V5H
DescriptorNITROGEN REGULATORY PROTEIN P-II, ADENOSINE-5'-TRIPHOSPHATE, MAGNESIUM ION, ... (5 entities in total)
Functional Keywordsnucleotide-binding, transcription regulation, transcription, phosphoprotein, gene regulation
Biological sourceSYNECHOCOCCUS ELONGATUS
Total number of polymer chains1
Total formula weight13064.31
Authors
Fokina, O.,Chellamuthu, V.R.,Zeth, K.,Forchhammer, K. (deposition date: 2010-04-14, release date: 2010-08-18, Last modification date: 2024-05-08)
Primary citationFokina, O.,Chellamuthu, V.R.,Zeth, K.,Forchhammer, K.
A Novel Signal Transduction Protein P(II) Variant from Synechococcus Elongatus Pcc 7942 Indicates a Two-Step Process for Nagk- P(II) Complex Formation.
J.Mol.Biol., 399:410-, 2010
Cited by
PubMed Abstract: P(II) signal transduction proteins are highly conserved in bacteria, archaea and plants and have key functions in coordination of central metabolism by integrating signals from the carbon, nitrogen and energy status of the cell. In the cyanobacterium Synechococcus elongatus PCC 7942, P(II) binds ATP and 2-oxoglutarate (2-OG) in a synergistic manner, with the ATP binding sites also accepting ADP. Depending on its effector molecule binding status, P(II) (from this cyanobacterium and other oxygenic phototrophs) complexes and regulates the arginine-controlled enzyme of the cyclic ornithine pathway, N-acetyl-l-glutamate kinase (NAGK), to control arginine biosynthesis. To gain deeper insights into the process of P(II) binding to NAGK, we searched for P(II) variants with altered binding characteristics and found P(II) variants I86N and I86T to be able to bind to an NAGK variant (R233A) that was previously shown to be unable to bind wild-type P(II) protein. Analysis of interactions between these P(II) variants and wild-type NAGK as well as with the NAGK R233A variant suggested that the P(II) I86N variant was a superactive NAGK binder. To reveal the structural basis of this property, we solved the crystal structure of the P(II) I86N variant at atomic resolution. The large T-loop, which prevails in most receptor interactions of P(II) proteins, is present in a tightly bended conformation that mimics the T-loop of S. elongatus P(II) after having latched onto NAGK. Moreover, both P(II) I86 variants display a specific defect in 2-OG binding, implying a role of residue I86 in 2-OG binding. We propose a two-step model for the mechanism of P(II)-NAGK complex formation: in an initiating step, a contact between R233 of NAGK and E85 of P(II) initiates the bending of the extended T-loop of P(II), followed by a second step, where a bended T-loop deeply inserts into the NAGK clefts to form the tight complex.
PubMed: 20399792
DOI: 10.1016/J.JMB.2010.04.018
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.2 Å)
Structure validation

237423

PDB entries from 2025-06-11

PDB statisticsPDBj update infoContact PDBjnumon