Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

2WQJ

Crystal structure of a truncated variant of the human p73 tetramerization domain

Summary for 2WQJ
Entry DOI10.2210/pdb2wqj/pdb
Related1COK 1DXS 2WQI 2WTT
DescriptorTUMOR PROTEIN P73 (2 entities in total)
Functional Keywordsp73, p63, p53, tumor suppression, transcription factor, tetramer, hexamer, oligomerization domain, dna-binding, cooperativity, transcription, cell-cycle control, transcription regulation, apoptosis, cell cycle, development
Biological sourceHOMO SAPIENS (HUMAN)
Total number of polymer chains28
Total formula weight117004.66
Authors
Joerger, A.C. (deposition date: 2009-08-21, release date: 2009-10-06, Last modification date: 2024-05-08)
Primary citationJoerger, A.C.,Rajagopalan, S.,Natan, E.,Veprintsev, D.B.,Robinson, C.V.,Fersht, A.R.
Structural Evolution of P53, P63, and P73: Implication for Heterotetramer Formation.
Proc.Natl.Acad.Sci.USA, 106:17705-, 2009
Cited by
PubMed Abstract: Oligomerization of members of the p53 family of transcription factors (p53, p63, and p73) is essential for their distinct functions in cell-cycle control and development. To elucidate the molecular basis for tetramer formation of the various family members, we solved the crystal structure of the human p73 tetramerization domain (residues 351-399). Similarly to the canonical p53 tetramer, p73 forms a tetramer with D(2) symmetry that can be described as a dimer of dimers. The most striking difference between the p53 and p73 tetramerization domain is the presence of an additional C-terminal helix in p73. This helix, which is conserved in p63, is essential for stabilizing the overall architecture of the tetramer, as evidenced by the different oligomeric structures observed for a shortened variant lacking this helix. The helices act as clamps, wrapping around the neighboring dimer and holding it in place. In addition, we show by mass spectrometry that the tetramerization domains of p63 and p73, but not p53, fully exchange, with different mixed tetramers present at equilibrium, albeit at a relatively slow rate. Taken together, these data provide intriguing insights into the divergent evolution of the oligomerization domain within the p53 family, from the ancestral p63/p73-like protein toward smaller, less promiscuous monomeric building blocks in human p53, allowing functional separation of the p53 pathway from that of its family members.
PubMed: 19815500
DOI: 10.1073/PNAS.0905867106
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2 Å)
Structure validation

227111

건을2024-11-06부터공개중

PDB statisticsPDBj update infoContact PDBjnumon