Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2VKC

Solution structure of the B3BP Smr domain

Summary for 2VKC
Entry DOI10.2210/pdb2vkc/pdb
Related2D9I
DescriptorNEDD4-BINDING PROTEIN 2 (1 entity in total)
Functional Keywordshuman bcl3 binding protein, alternative splicing, homologous recombination, mismatch repair, small muts related, nucleotide-binding, atp-binding, ubl conjugation, phosphorylation, smr, b3bp, hydrolase, cytoplasm, coiled coil
Biological sourceHOMO SAPIENS (HUMAN)
Cellular locationCytoplasm (By similarity): Q86UW6
Total number of polymer chains1
Total formula weight15189.63
Authors
Diercks, T.,Ab, E.,Daniels, M.A.,deJong, R.N.,Besseling, R.,Kaptein, R.,Folkers, G.E. (deposition date: 2007-12-18, release date: 2008-10-14, Last modification date: 2024-05-15)
Primary citationDiercks, T.,Ab, E.,Daniels, M.A.,De Jong, R.N.,Besseling, R.,Kaptein, R.,Folkers, G.E.
Solution Structure and Characterization of the DNA- Binding Activity of the B3BP-Smr Domain.
J.Mol.Biol., 383:1156-, 2008
Cited by
PubMed Abstract: The MutS1 protein recognizes unpaired bases and initiates mismatch repair, which are essential for high-fidelity DNA replication. The homologous MutS2 protein does not contribute to mismatch repair, but suppresses homologous recombination. MutS2 lacks the damage-recognition domain of MutS1, but contains an additional C-terminal extension: the small MutS-related (Smr) domain. This domain, which is present in both prokaryotes and eukaryotes, has previously been reported to bind to DNA and to possess nicking endonuclease activity. We determine here the solution structure of the functionally active Smr domain of the Bcl3-binding protein (also known as Nedd4-binding protein 2), a protein with unknown function that lacks other domains present in MutS proteins. The Smr domain adopts a two-layer alpha-beta sandwich fold, which has a structural similarity to the C-terminal domain of IF3, the R3H domain, and the N-terminal domain of DNase I. The most conserved residues are located in three loops that form a contiguous, exposed, and positively charged surface with distinct sequence identity for prokaryotic and eukaryotic Smr domains. NMR titration experiments and DNA binding studies using Bcl3-binding protein-Smr domain mutants suggested that these most conserved loop regions participate in DNA binding to single-stranded/double-stranded DNA junctions. Based on the observed DNA-binding-induced multimerization, the structural similarity with both subdomains of DNase I, and the experimentally identified DNA-binding surface, we propose a model for DNA recognition by the Smr domain.
PubMed: 18804481
DOI: 10.1016/J.JMB.2008.09.005
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

236620

PDB entries from 2025-05-28

PDB statisticsPDBj update infoContact PDBjnumon