Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

2VFC

The structure of Mycobacterium marinum arylamine N-acetyltransferase in complex with CoA

Summary for 2VFC
Entry DOI10.2210/pdb2vfc/pdb
Related2VFB
DescriptorARYLAMINE N-ACETYLTRANSFERASE, COENZYME A (3 entities in total)
Functional Keywordstransferase
Biological sourceMYCOBACTERIUM MARINUM
Total number of polymer chains2
Total formula weight62872.57
Authors
Fullam, E.,Westwood, I.M.,Anderton, M.C.,Lowe, E.D.,Sim, E.,Noble, M.E.M. (deposition date: 2007-11-02, release date: 2007-12-18, Last modification date: 2023-12-13)
Primary citationFullam, E.,Westwood, I.M.,Anderton, M.C.,Lowe, E.D.,Sim, E.,Noble, M.E.M.
Divergence of Cofactor Recognition Across Evolution: Coenzyme a Binding in a Prokaryotic Arylamine N-Acetyltransferase.
J.Mol.Biol., 375:178-, 2008
Cited by
PubMed Abstract: Arylamine N-acetyltransferase (NAT) enzymes are widespread in nature. They serve to acetylate xenobiotics and/or endogenous substrates using acetyl coenzyme A (CoA) as a cofactor. Conservation of the architecture of the NAT enzyme family from mammals to bacteria has been demonstrated by a series of prokaryotic NAT structures, together with the recently reported structure of human NAT1. We report here the cloning, purification, kinetic characterisation and crystallographic structure determination of NAT from Mycobacterium marinum, a close relative of the pathogenic Mycobacterium tuberculosis. We have also determined the structure of M. marinum NAT in complex with CoA, shedding the first light on cofactor recognition in prokaryotic NATs. Surprisingly, the principal CoA recognition site in M. marinum NAT is located some 30 A from the site of CoA recognition in the recently deposited structure of human NAT2 bound to CoA. The structure explains the Ping-Pong Bi-Bi reaction mechanism of NAT enzymes and suggests mechanisms by which the acetylated enzyme intermediate may be protected. Recognition of CoA in a much wider groove in prokaryotic NATs suggests that this subfamily may accommodate larger substrates than is the case for human NATs and may assist in the identification of potential endogenous substrates. It also suggests the cofactor-binding site as a unique subsite to target in drug design directed against NAT in mycobacteria.
PubMed: 18005984
DOI: 10.1016/J.JMB.2007.10.019
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.7 Å)
Structure validation

227561

PDB entries from 2024-11-20

PDB statisticsPDBj update infoContact PDBjnumon