Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

2M0S

Solution Structure of the trans-membrane domain of the NS2A of dengue virus

Summary for 2M0S
Entry DOI10.2210/pdb2m0s/pdb
NMR InformationBMRB: 18822
DescriptorNS2A protein (1 entity in total)
Functional Keywordsnonstructural protein, membrane protein, viral protein
Biological sourceDengue virus 2
Cellular locationEnvelope protein E: Virion membrane; Multi- pass membrane protein: Q9YKL3
Total number of polymer chains1
Total formula weight2981.62
Authors
Gayen, S.,Kang, C. (deposition date: 2012-11-05, release date: 2013-02-27, Last modification date: 2024-05-15)
Primary citationXie, X.,Gayen, S.,Kang, C.,Yuan, Z.,Shi, P.Y.
Membrane Topology and Function of Dengue Virus NS2A Protein.
J.Virol., 87:4609-4622, 2013
Cited by
PubMed Abstract: Flavivirus nonstructural protein 2A (NS2A) is a component of the viral replication complex that functions in virion assembly and antagonizes the host immune response. Although flavivirus NS2A is known to associate with the endoplasmic reticulum (ER) membrane, the detailed topology of this protein has not been determined. Here we report the first topology model of flavivirus NS2A on the ER membrane. Using dengue virus (DENV) NS2A as a model, we show that (i) the N-terminal 68 amino acids are located in the ER lumen, with one segment (amino acids 30 to 52) that interacts with ER membrane without traversing the lipid bilayer; (ii) amino acids 69 to 209 form five transmembrane segments, each of which integrally spans the ER membrane; and (iii) the C-terminal tail (amino acids 210 to 218) is located in the cytosol. Nuclear magnetic resonance (NMR) structural analysis showed that the first membrane-spanning segment (amino acids 69 to 93) consists of two helices separated by a "helix breaker." The helix breaker is formed by amino acid P85 and one positively charged residue, R84. Functional analysis using replicon and genome-length RNAs of DENV-2 indicates that P85 is not important for viral replication. However, when R84 was replaced with E, the mutation attenuated both viral RNA synthesis and virus production. Remarkably, an R84A mutation did not affect viral RNA synthesis but blocked intracellular formation of infectious virions. Collectively, the mutagenesis results demonstrate that NS2A functions in both DENV RNA synthesis and virion assembly/maturation. The topology model of DENV NS2A provides a good starting point for studying how flavivirus NS2A modulates viral replication and evasion of host immune response.
PubMed: 23408612
DOI: 10.1128/JVI.02424-12
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

227344

PDB entries from 2024-11-13

PDB statisticsPDBj update infoContact PDBjnumon