Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2L4W

NMR structure of the Xanthomonas VirB7

Summary for 2L4W
Entry DOI10.2210/pdb2l4w/pdb
Related3OV5
NMR InformationBMRB: 17257
DescriptorUncharacterized protein (1 entity in total)
Functional Keywordstype iv secretion system, virb7, n0 domain, membrane protein, xanthomonas, lipoprotein, bacterial outer membrane, protein transport
Biological sourceXanthomonas axonopodis pv. citri (Citrus canker)
Total number of polymer chains1
Total formula weight12871.41
Authors
Souza, D.P.,Farah, C.S.,Salinas, R.K. (deposition date: 2010-10-15, release date: 2011-06-01, Last modification date: 2024-05-01)
Primary citationSouza, D.P.,Andrade, M.O.,Alvarez-Martinez, C.E.,Arantes, G.M.,Farah, C.S.,Salinas, R.K.
A Component of the Xanthomonadaceae Type IV Secretion System Combines a VirB7 Motif with a N0 Domain Found in Outer Membrane Transport Proteins.
Plos Pathog., 7:e1002031-e1002031, 2011
Cited by
PubMed Abstract: Type IV secretion systems (T4SS) are used by Gram-negative bacteria to translocate protein and DNA substrates across the cell envelope and into target cells. Translocation across the outer membrane is achieved via a ringed tetradecameric outer membrane complex made up of a small VirB7 lipoprotein (normally 30 to 45 residues in the mature form) and the C-terminal domains of the VirB9 and VirB10 subunits. Several species from the genera of Xanthomonas phytopathogens possess an uncharacterized type IV secretion system with some distinguishing features, one of which is an unusually large VirB7 subunit (118 residues in the mature form). Here, we report the NMR and 1.0 Å X-ray structures of the VirB7 subunit from Xanthomonas citri subsp. citri (VirB7(XAC2622)) and its interaction with VirB9. NMR solution studies show that residues 27-41 of the disordered flexible N-terminal region of VirB7(XAC2622) interact specifically with the VirB9 C-terminal domain, resulting in a significant reduction in the conformational freedom of both regions. VirB7(XAC2622) has a unique C-terminal domain whose topology is strikingly similar to that of N0 domains found in proteins from different systems involved in transport across the bacterial outer membrane. We show that VirB7(XAC2622) oligomerizes through interactions involving conserved residues in the N0 domain and residues 42-49 within the flexible N-terminal region and that these homotropic interactions can persist in the presence of heterotropic interactions with VirB9. Finally, we propose that VirB7(XAC2622) oligomerization is compatible with the core complex structure in a manner such that the N0 domains form an extra layer on the perimeter of the tetradecameric ring.
PubMed: 21589901
DOI: 10.1371/journal.ppat.1002031
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

247947

PDB entries from 2026-01-21

PDB statisticsPDBj update infoContact PDBjnumon