2IC0
Urate oxidase under 2.0 MPa pressure of xenon
Summary for 2IC0
Entry DOI | 10.2210/pdb2ic0/pdb |
Related | 2IBA |
Descriptor | Uricase, SODIUM ION, 8-AZAXANTHINE, ... (5 entities in total) |
Functional Keywords | uric acid degradation, t-fold domain, gaz-protein complex, oxidoreductase |
Biological source | Aspergillus flavus |
Cellular location | Peroxisome: Q00511 |
Total number of polymer chains | 1 |
Total formula weight | 34490.97 |
Authors | Colloc'h, N.,Retailleau, P.,Sopkova-de Oliveira Santos, J.,Abraini, J.H.,Prange, T. (deposition date: 2006-09-12, release date: 2007-02-06, Last modification date: 2024-10-16) |
Primary citation | Colloc'h, N.,Sopkova-de Oliveira Santos, J.,Retailleau, P.,Langlois d'Estainto, B.,Gallois, B.,Brisson, A.,Risso, J.J.,Lemaire, M.,Abraini, J.H. Protein Crystallography under Xenon and Nitrous Oxide Pressure: Comparison with In Vivo Pharmacology Studies and Implications for the Mechanism of Inhaled Anesthetic Action Biophys.J., 92:217-224, 2007 Cited by PubMed Abstract: In contrast with most inhalational anesthetics, the anesthetic gases xenon (Xe) and nitrous oxide (N(2)O) act by blocking the N-methyl-d-aspartate (NMDA) receptor. Using x-ray crystallography, we examined the binding characteristics of these two gases on two soluble proteins as structural models: urate oxidase, which is a prototype of a variety of intracellular globular proteins, and annexin V, which has structural and functional characteristics that allow it to be considered as a prototype for the NMDA receptor. The structure of these proteins complexed with Xe and N(2)O were determined. One N(2)O molecule or one Xe atom binds to the same main site in both proteins. A second subsite is observed for N(2)O in each case. The gas-binding sites are always hydrophobic flexible cavities buried within the monomer. Comparison of the effects of Xe and N(2)O on urate oxidase and annexin V reveals an interesting relationship with the in vivo pharmacological effects of these gases, the ratio of the gas-binding sites' volume expansion and the ratio of the narcotic potency being similar. Given these data, we propose that alterations of cytosolic globular protein functions by general anesthetics would be responsible for the early stages of anesthesia such as amnesia and hypnosis and that additional alterations of ion-channel membrane receptor functions are required for deeper effects that progress to "surgical" anesthesia. PubMed: 17028130DOI: 10.1529/biophysj.106.093807 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.78 Å) |
Structure validation
Download full validation report