2HKY
NMR solution structure of human RNase 7
Summary for 2HKY
Entry DOI | 10.2210/pdb2hky/pdb |
Descriptor | Ribonuclease 7 (1 entity in total) |
Functional Keywords | rnase, antimicrobial activity, hydrolase |
Biological source | Homo sapiens (human) |
Cellular location | Secreted: Q9H1E1 |
Total number of polymer chains | 1 |
Total formula weight | 14714.19 |
Authors | Huang, Y.-C.,Chen, C.,Lou, Y.-C. (deposition date: 2006-07-06, release date: 2006-12-26, Last modification date: 2024-10-30) |
Primary citation | Huang, Y.C.,Lin, Y.M.,Chang, T.W.,Wu, S.J.,Lee, Y.S.,Chang, M.D.,Chen, C.,Wu, S.H.,Liao, Y.D. The flexible and clustered lysine residues of human ribonuclease 7 are critical for membrane permeability and antimicrobial activity. J.Biol.Chem., 282:4626-4633, 2007 Cited by PubMed Abstract: The ubiquitous ribonucleases (RNases) play important roles in RNA metabolism, angiogenesis, neurotoxicity, and antitumor or antimicrobial activity. Only the antimicrobial RNases possess high positively charged residues, although their mechanisms of action remain unclear. Here, we report on the role of cationic residues of human RNase7 (hRNase7) in its antimicrobial activity. It exerted antimicrobial activity against bacteria and yeast, even at 4 degrees C. The bacterial membrane became permeable to the DNA-binding dye SYTOX(R) Green in only a few minutes after bactericidal RNase treatment. NMR studies showed that the 22 positively charged residues (Lys(18) and Arg(4)) are distributed into three clusters on the surface of hRNase7. The first cluster, K(1),K(3),K(111),K(112), was located at the flexible coil near the N terminus, whereas the other two, K(32),K(35) and K(96),R(97),K(100), were located on rigid secondary structures. Mutagenesis studies showed that the flexible cluster K(1),K(3),K(111),K(112), rather than the catalytic residues His(15), Lys(38), and His(123) or other clusters such as K(32),K(35) and K(96),R(97),K(100), is critical for the bactericidal activity. We suggest that the hRNase7 binds to bacterial membrane and renders the membrane permeable through the flexible and clustered Lys residues K(1),K(3),K(111),K(112). The conformation of hRNase7 can be adapted for pore formation or disruption of bacterial membrane even at 4 degrees C. PubMed: 17150966DOI: 10.1074/jbc.M607321200 PDB entries with the same primary citation |
Experimental method | SOLUTION NMR |
Structure validation
Download full validation report
