2IT6
Crystal Structure of DCSIGN-CRD with man2
Summary for 2IT6
Entry DOI | 10.2210/pdb2it6/pdb |
Related | 2IT5 |
Related PRD ID | PRD_900111 |
Descriptor | CD209 antigen, alpha-D-mannopyranose-(1-2)-alpha-D-mannopyranose, CALCIUM ION, ... (4 entities in total) |
Functional Keywords | c-type lectin, protein carbohydrate complex, immune system |
Biological source | Homo sapiens (human) |
Total number of polymer chains | 1 |
Total formula weight | 18209.11 |
Authors | Weis, W.I.,Feinberg, H.,Castelli, R.,Drickamer, K.,Seeberger, P.H. (deposition date: 2006-10-19, release date: 2006-12-05, Last modification date: 2024-11-13) |
Primary citation | Feinberg, H.,Castelli, R.,Drickamer, K.,Seeberger, P.H.,Weis, W.I. Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins. J.Biol.Chem., 282:4202-4209, 2007 Cited by PubMed Abstract: The dendritic cell surface receptor DC-SIGN and the closely related endothelial cell receptor DC-SIGNR specifically recognize high mannose N-linked carbohydrates on viral pathogens. Previous studies have shown that these receptors bind the outer trimannose branch Manalpha1-3[Manalpha1-6]Manalpha present in high mannose structures. Although the trimannoside binds to DC-SIGN or DC-SIGNR more strongly than mannose, additional affinity enhancements are observed in the presence of one or more Manalpha1-2Manalpha moieties on the nonreducing termini of oligomannose structures. The molecular basis of this enhancement has been investigated by determining crystal structures of DC-SIGN bound to a synthetic six-mannose fragment of a high mannose N-linked oligosaccharide, Manalpha1-2Manalpha1-3[Manalpha1-2Manalpha1-6]Manalpha1-6Man and to the disaccharide Manalpha1-2Man. The structures reveal mixtures of two binding modes in each case. Each mode features typical C-type lectin binding at the principal Ca2+-binding site by one mannose residue. In addition, other sugar residues form contacts unique to each binding mode. These results suggest that the affinity enhancement displayed toward oligosaccharides decorated with the Manalpha1-2Manalpha structure is due in part to multiple binding modes at the primary Ca2+ site, which provide both additional contacts and a statistical (entropic) enhancement of binding. PubMed: 17150970DOI: 10.1074/jbc.M609689200 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.95 Å) |
Structure validation
Download full validation report