1Z3P
X-Ray crystal structure of a mutant Ribonuclease S (M13Nva)
Summary for 1Z3P
Entry DOI | 10.2210/pdb1z3p/pdb |
Related | 1D5D 1D5E 1D5H 1RBC 1RBD 1RBH 1Z3L 1Z3M |
Descriptor | Ribonuclease pancreatic, S-Peptide, Ribonuclease pancreatic, S-Protein, SULFATE ION, ... (4 entities in total) |
Functional Keywords | rnase s mutant (m13nva), s-peptide, s-protein, cavity, hydrolase |
Biological source | Bos taurus (cattle) More |
Cellular location | Secreted: P61823 P61823 |
Total number of polymer chains | 2 |
Total formula weight | 13468.99 |
Authors | Das, M.,Rao, B.V.,Ghosh, S.,Varadarajan, R. (deposition date: 2005-03-14, release date: 2005-03-29, Last modification date: 2023-10-25) |
Primary citation | Das, M.,Rao, B.V.,Ghosh, S.,Varadarajan, R. Attempts to delineate the relative contributions of changes in hydrophobicity and packing to changes in stability of ribonuclease S mutants. Biochemistry, 44:5923-5930, 2005 Cited by PubMed Abstract: While the hydrophobic driving force is thought to be a major contributor to protein stability, it is difficult to experimentally dissect out its contribution to the overall free energy of folding. We have made large to small substitutions of buried hydrophobic residues at positions 8 and 13 in the peptide/protein complex, RNase-S, and have characterized the structures by X-ray crystallography. The thermodynamics of association of these mutant S peptides with S protein was measured in the presence of different concentrations of methanol and ethanol. The reduction in the strength of the hydrophobic driving force in the presence of these organic solvents was estimated from surface-tension data as well as from the dependence of the DeltaC(p) of protein/peptide binding on the alcohol concentration. The data indicated a decrease in the strength of the hydrophobic driving force of about 30-40% over a 0-30% range of the alcohol concentration. We observe that large to small substitutions destabilize the protein. However, the amount of destabilization, relative to the wild type, is independent of the alcohol concentration over the range of alcohol concentrations studied. The data clearly indicate that decreased stability of the mutants is primarily due to the loss of packing interactions rather than a reduced hydrophobic driving force and suggest a value of the hydrophobic driving force of less than 18 cal mol(-)(1) A(2). PubMed: 15823052DOI: 10.1021/bi050001+ PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2 Å) |
Structure validation
Download full validation report