Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

1YNA

ENDO-1,4-BETA-XYLANASE, ROOM TEMPERATURE, PH 4.0

Summary for 1YNA
Entry DOI10.2210/pdb1yna/pdb
DescriptorENDO-1,4-BETA-XYLANASE (2 entities in total)
Functional Keywordshydrolase, xylanase
Biological sourceThermomyces lanuginosus
Total number of polymer chains1
Total formula weight21311.85
Authors
Gruber, K.,Kratky, C. (deposition date: 1996-08-22, release date: 1997-02-12, Last modification date: 2024-11-20)
Primary citationGruber, K.,Klintschar, G.,Hayn, M.,Schlacher, A.,Steiner, W.,Kratky, C.
Thermophilic xylanase from Thermomyces lanuginosus: high-resolution X-ray structure and modeling studies.
Biochemistry, 37:13475-13485, 1998
Cited by
PubMed Abstract: The crystal structure of the thermostable xylanase from Thermomyces lanuginosus was determined by single-crystal X-ray diffraction. The protein crystallizes in space group P21, a = 40.96(4) A, b = 52. 57(5) A, c = 50.47 (5) A, beta = 100.43(5) degrees, Z = 2. Diffraction data were collected at room temperature for a resolution range of 25-1.55 A, and the structure was solved by molecular replacement with the coordinates of xylanase II from Trichoderma reesei as a search model and refined to a crystallographic R-factor of 0.155 for all observed reflections. The enzyme belongs to the family 11 of glycosyl hydrolases [Henrissat, B., and Bairoch, A. (1993) Biochem. J. 293, 781-788]. pKa calculations were performed to assess the protonation state of residues relevant for catalysis and enzyme stability, and a heptaxylan was fitted into the active-site groove by homology modeling, using the published crystal structure of a complex between the Bacillus circulans xylanase and a xylotetraose. Molecular dynamics indicated the central three sugar rings to be tightly bound, whereas the peripheral ones can assume different orientations and conformations, suggesting that the enzyme might also accept xylan chains which are branched at these positions. The reasons for the thermostability of the T. lanuginosus xylanase were analyzed by comparing its crystal structure with known structures of mesophilic family 11 xylanases. It appears that the thermostability is due to the presence of an extra disulfide bridge, as well as to an increase in the density of charged residues throughout the protein.
PubMed: 9753433
DOI: 10.1021/bi980864l
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.55 Å)
Structure validation

235666

PDB entries from 2025-05-07

PDB statisticsPDBj update infoContact PDBjnumon